## Modules:

### physics700 Elective Advanced Lectures physics730 Theoretical Physics

## Course:



# **Computational Physics (T)**

Course No.: physics760

| Category | Туре                       | Language | Teaching hours | СР | Semester |
|----------|----------------------------|----------|----------------|----|----------|
| Elective | Lecture with exercises and | English  | 2+2+1          | 7  | WT/ST    |
|          | project work               |          |                |    |          |

#### **Requirements:**

Knowledge of a modern programming language (like C, C++)

**Preparation:** 

Theoretical courses at the Bachelor degree level

#### Form of Testing and Examination:

successful participation in exercises, presentation of an independently completed project

#### Length of Course:

1 semester

#### Aims of the Course:

ability to apply modern computational methods for solving physics problems

#### Contents of the Course:

Statistical Models, Likelihood, Bayesian and Bootstrap Methods Random Variable Generation Stochastic Processes Monte-Carlo methods Markov-Chain Monte-Carlo

#### **Recommended Literature:**

W.H. Press et al.: Numerical Recipes in C (Cambridge University Press) http://library.lanl.gov/numerical/index.html
C.P. Robert and G. Casella: Monte Carlo Statistical Methods (Springer 2004)
Tao Pang: An Introduction to Computational Physics (Cambridge University Press)
Vesely, Franz J.: Computational Physics: An Introduction (Springer)
Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in Statistical Physics (Springer)
Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle Physics (Springer)