Module No.: ECThPhysics Credit Points (CP): 7

Category: Elective
Semester: 1.

Module: Elective Courses Theoretical Physics

Module Elements:

Nr.	Course Title	Number	СР	Туре	Workload	Sem.
1.	Advanced Quantum Theory	physics606	7	Lect. + ex.	210 hrs	WT
2.	Group Theory (T)	physics751	7	Lect. + ex.	210 hrs	WT
3.	General Relativity and Cosmology (T)	physics754	7	Lect. + ex.	210 hrs	ST
4.	Quantum Field Theory (T)	physics755	7	Lect. + ex.	210 hrs	ST
5.	Computational Physics (T)	physics760	7	Lect. + ex. +	210 hrs	WT/ST
				proj.		
6.	Advanced Quantum Field Theory (T)	physics7501	7	Lect. + ex.	210 hrs	WT

Requirements for Participation:

for physics606: none

for all other modules: physics606

Form of Examination:

written examination

Content:

see with the course

Aims/Skills:

see with the course

Course achievement/Criteria for awarding cp's:

successfull work with the exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

at least 7 cp out of this area must be achieved

Module: Elective Courses Theoretical

Physics

Module No.: ECThPhysics

Course: universitätbonn

Advanced Quantum Theory

Course No.: physics606

Category	Туре	Language	Teaching hours	СР	Semester
Required	Lecture with exercises	English	3+2	7	WT

Requirements for Participation:

Preparation:

Theoretical courses at the Bachelor degree level

Form of Testing and Examination:

Requirements for the module examination (written examination): successful work with exercises

Length of Course:

1 semester

Aims of the Course:

Ability to solve problems in relativistic quantum mechanics, scattering theory and many-particle theory

Contents of the Course:

Born approximation, partial waves, resonances advanced scattering theory: S-matrix, Lippman-Schwinger equation relativistic wave equations: Klein-Gordon equation, Dirac equation representations of the Lorentz group many body theory second quantization basics of quantum field theory path integral formalism Greens functions, propagator theory

Recommended Literature:

L. D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.3 Quantum Mechanics (Butterworth-Heinemann 1997)

J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley 1995)

F. Schwabl, Advanced Quantum Mechanics. (Springer, Heidelberg 3rd Ed. 2005)

1 July 2014

Modules: ECThPhysics Elective Courses Theoretical Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: universitätbonn

Group Theory (T)

Course No.: physics751

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	WT

Requirements for Participation:

Preparation:

physik421 (Quantum Mechanics)

Form of Testing and Examination:

Requirements for the examination (written): successful work with the

Length of Course:

1 semester

Aims of the Course:

Acquisition of mathematical foundations of group theory with regard to applications in theoretical physics

Contents of the Course:

Mathematical foundations:

Finite groups, Lie groups and Lie algebras, highest weight representations, classification of simple Lie algebras, Dynkin diagrams, tensor products and Young tableaux, spinors, Clifford algebras, Lie super algebras

Recommended Literature:

B. G. Wybourne; Classical Groups for Physicists (J. Wiley & Sons 1974)

H. Georgi; Lie Algebras in Particle Physics (Perseus Books 2. Aufl. 1999)

W. Fulton, J. Harris; Representation Theory (Springer, New York 1991)

Modules: ECThPhysics Elective Courses Theoretical Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course:

General Relativity and Cosmology (T)

Course No.: physics754

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	ST

Requirements for Participation:

Preparation:

physik221 and physik321 (Theoretical Physics I and II)

Differential geometry

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding the general theory of relativity and its cosmological implications

Contents of the Course:

Relativity principle

Gravitation in relativistic mechanics

Curvilineal coordinates

Curvature and energy-momentum tensor

Einstein-Hilbert action and the equations of the gravitational field

Black holes

Gravitational waves

Time evolution of the universe

Friedmann-Robertson-Walker solutions

Recommended Literature:

S.Weinberg; Gravitation and Cosmology (J. Wiley & Sons 1972)

R. Sexl: Gravitation und Kosmologie, Eine Einführung in die Allgemeine Relativitätstheorie (Spektrum Akadem. Verlag 5. Aufl 2002)

L.D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.2: Classical field theory (Butterworth-Heinemann 1995), also available in German from publisher Harry Deutsch

Modules: ECThPhysics Elective Courses Theoretical Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: universitätbon

Quantum Field Theory (T)

Course No.: physics755

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	ST

Requirements for Participation:

Preparation:

Advanced quantum theory (physics606)

Form of Testing and Examination:

Requirements for the examination (written): successful work with the exercises

Length of Course:

1 semester

Aims of the Course:

Understanding quantum field theoretical methods, ability to compute processes in quantum electrodynamics (QED) and many particle systems

Contents of the Course:

Classical field theory

Quantization of free fields

Path integral formalism

Perturbation theory

Methods of regularization: Pauli-Villars, dimensional

Renormalizability

Computation of Feynman diagrams

Transition amplitudes in QED

Applications in many particle systems

Recommended Literature:

N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of guantized fields (J. Wiley & Sons 1959)

M. Kaku, Quantum Field Theory (Oxford University Press 1993)

M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper Collins Publ. 1995)

L. H. Ryder; Quantum Field Theory (Cambridge University Press 1996)

S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)

Modules: ECThPhysics Elective Courses Theoretical Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: universität bonn

Computational Physics (T)

Course No.: physics760

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises and	English	2+2+1	7	WT/ST
	project work				

Requirements for Participation:

Knowledge of a modern programming language (like C, C++)

Preparation:

Theoretical courses at the Bachelor degree level

Form of Testing and Examination:

successful participation in exercises, presentation of an independently completed project

Length of Course:

1 semester

Aims of the Course:

ability to apply modern computational methods for solving physics problems

Contents of the Course:

Statistical Models, Likelihood, Bayesian and Bootstrap Methods Random Variable Generation Stochastic Processes Monte-Carlo methods Markov-Chain Monte-Carlo

Recommended Literature:

W.H. Press et al.: Numerical Recipes in C (Cambridge University Press)

http://library.lanl.gov/numerical/index.html

C.P. Robert and G. Casella: Monte Carlo Statistical Methods (Springer 2004)

Tao Pang: An Introduction to Computational Physics (Cambridge University Press)

Vesely, Franz J.: Computational Physics: An Introduction (Springer)

Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in Statistical Physics (Springer)

Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle Physics (Springer)

5 June 2010

Modules: ECThPhysics Elective Courses Theoretical Physics

physics70c Elective Advanced Lectures: Theoretical

Physics

Course: uni

universität**bonn**

Advanced Quantum Field Theory

(T)

Course No.: physics7501

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	WT

Requirements for Participation:

Preparation:

3-year theoretical physics course with extended interest in theoretical physics and mathematics

Form of Testing and Examination:

Requirements for the module examination (written examination): successful work with exercises

Length of Course:

1 semester

Aims of the Course:

Introduction to modern methods and developments in Theoretical Physics in regard to current research

Contents of the Course:

Selected Topics in Modern Theoretical Physics for example:

Anomalies

Solitons and Instantons

Quantum Fluids

Bosonization

Renormalization Group

Bethe Ansatz

Elementary Supersymmetry

Gauge Theories and Differential Forms

Applications of Group Theory

Recommended Literature:

M. Nakahara; Geometry, Topology and Physics (Institute of Physics Publishing, London 2nd Ed. 2003)

R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field The

R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland Personal Library, Amsterdam 3rd reprint 2003)

A. M. Tsvelik; Quantum Field Theory in Condensed Matter Physics (Cambridge University Press 2nd Ed. 2003)

A. Zee; Quantum Field Theory in a Nutshell (Princeton University Press 2003)

6 July 2014