Modul-Nr.:physik010Leistungspunkte:3-17Kategorie:WahlSemester:1.-4.

Modul: Physik-Lehrveranstaltungen für Nebenfachstudierende

Modulbestandteile:

Nr.	LV Titel	LV Nr	LP	LV-Art	Aufwand	Sem.
1.	Physik für Naturwissenschaftler I	physik011	*	Vorl. + Üb.	150 Std.	WS
2.	Physik für Naturwissenschaftler II	physik012	*	Vorl. + Üb.	120 Std.	SS
3.	Physikal. Anfängerprakt. für	physik013	*	Praktikum	120 Std.	WS/SS
	Naturwiss.					
4.	Prakt. Üb. in Physik für Geodäten	physik014	5	Praktikum	150 Std.	WS/SS
5.	Physik für Mediziner, Pharmazeuten	physik021	*	Vorl. + Üb.		WS/SS
	und Geodäten					
6.	Prakt. Üb. in Physik für Biologen	physik022	4	Praktikum	120 Std.	WS/SS
7.	Prakt. Üb. in Physik für Molek.	physik023	4	Praktikum	120 Std.	WS/SS
	Biomed.					
8.	Prakt. Üb. in Physik für Mediziner	physik024	4	Praktikum	120 Std.	WS/SS
9.	Prakt. Üb. in Physik für	physik025	4	Praktikum	120 Std.	WS/SS
	Zahnmediziner					
10.	Prakt. Üb. in Physik für	physik026	4	Praktikum	120 Std.	WS/SS
	Pharmazeuten					
11.	Physik für Ernährungs- ,	physik041	6	Vorl. + Üb.	180 Std.	SS
	Lebensmittel- und Agrarwissenschaften					
12.	Physikalische Anwendungen in der	physik051	*	Vorlesung	90 Std.	WS/SS
	Medizin					

Zulassungsvoraussetzungen:

Die Teilnahmevoraussetzungen richten sich nach dem Nebenfach.

Empfohlene Vorkenntnisse:

Inhalt:

Physikvorlesungen und Praktika für Nebenfachstudierende. Lehrveranstaltungen können auf verschiedene Arten kombiniert werden (auch LP-Unterschiede). Der erfolgreiche Abschluss von Vorlesungen kann Vorbedingung für Teilnahme an Praktika sein (siehe LV-Beschreibungen).

Lernziele/Kompetenzen:

siehe Teilmodule

Prüfungsmodalitäten:

siehe Teilmodule

Dauer des Moduls: 1-2 Semester

Max. Teilnehmerzahl:

Anmeldeformalitäten:

* Wird in der Bachelor-Prüfungsordnu	ng des importierenden Faches	s festgelegt.	

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physik für Naturwissenschaftler

LV-Nr.: physik011

Kategorie	LV-Art	Sprache	sws	LP	Semester
fachspezifisch	Vorlesung mit Übungen	deutsch	4+1	*	WS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

nützlich: Vertrautheit mit mathematischen Methoden der SEK II (Vektorrechnung, trigonomische

Funktionen, Differentiation, Integration)

nützlich: Vorkurs Mathematik für Naturwissenschaftler

Studien- und Prüfungsmodalitäten:

Klausur

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Erarbeitung von Physikalischen Grundkenntnissen und Ihre Anwendung auf die rechnerische oder phänomenologische Lösung von naturwissenschaftlichen Problemstellungen. Vorbereitung auf die Durchführung eigener praktischer Experimente im physikalischen Praktikum.

Inhalte der LV:

Grundlagen (Größen, Einheiten, Statistik und Fehlerrechnung), Bewegung in einer Dimension (Geschwindigkeit, Beschleunigung, diffenzieren, integrieren), Bewegung in zwei Dimensionen (Vektoren, Wurfbahnen), Newton'sche Gesetze (Kraftgesetze, Bewegungsgleichungen, Lösung in einfachen Fällen), Erhaltungssätze (Arbeit, Energie, Impuls, Stoßprozesse), Rotationen und Kreisbewegungen (Vektorprodukt, Drehmoment, Drehimpuls, Trägheitsmoment), Gravitation (Gravitationsgesetz, Kepler'sche Gesetze), Rotierende Bezugssysteme (Zentrifugalkraft, Corioliskraft), Schwingungen (einfach, gedämpft, erzwungen, Resonanz), Elastische Eigenschaften von Festkörpern (Kompressionsmodul, Schermodul), Wellen (mechanisch, akustisch), Fluide (Druck, Auftrieb, Strömungen, Bernoulli).

Literaturhinweise:

W. Bauer, W. Benenson G. Westfall: CliXX Physik CD-Rom (Harri Deutsch, Frankfurt am Main 2004) E.W. Otten: Repetitorium Experimentalphysik (Springer, Heidelberg 2. Aufl. 2002) Tipler, Dransfeld-Kienle, Orear, Metzler (Physik, Oberstufe)

1

^{*} Wird in der Bachelor-Prüfungsordnung des importierenden Faches festgelegt.

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physik für Naturwissenschaftler

LV-Nr.: physik012

Kategorie	LV-Art	Sprache	sws	LP	Semester
fachspezifisch	Vorlesung mit Übungen	deutsch	4+1	*	SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

nützlich: Vertrautheit mit mathematischen Methoden der SEK II (Vektorrechnung, trigon. Funktionen, Differentiation, Integration)

nützlich: Vorkurs Mathematik für Naturwissenschaftler

Empfehlung: Kombination der Vorlesung mit den begleitenden Übungen in Gruppen, zur Lösung von naturwissenschaftlichen Problemstellungen und Vorbereitung auf die Klausur.

Studien- und Prüfungsmodalitäten:

zweistündige Klausur am Ende des Semesters.

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Erarbeitung von Physikalischen Grundkenntnissen und Ihre Anwendung auf die rechnerische oder phänomenologische Lösung von naturwissenschaftlichen Problemstellungen.

Vorbereitung auf die Durchführung eigener praktischer Experimente im physikalischen Praktikum.

Inhalte der LV:

Wärmelehre (Temperatur, Wärme, Thermodynamik, Zustandsänderungen, Kreisprozesse), Elektrostatik (Ladung, Coulomb-Gesetz, elektrisches Feld, Dipol, Kondensator, Kapazität, Dielektrika) Elektrische Leitung (Leitungsmechanismen, Stromdichte, Ladungserhaltung, Ohm'sches Gesetz, Stromkreise) Magnetismus (Ströme als Ursache, Felder, magn. Dipol, Spule, Materie in magnetischen Feldern) Veränderliche Ströme (Induktion, Transformator, Wechselstromkreis, Schwingkreis) Elektromagnetische Wellen (Hertz'scher Dipol, Polarisation, Wärmestrahlung) Ursprünge der Quantentheorie (Photonen, Atomaufbau, Spektrallinien, Kernspinresonanz), Kern-und Teilchenphysik (Kernzerfälle, Aufbau der Materie, fundamentale Wechselwirkungen), Optik (Wellenoptik und Photonen, Interferenz an Spalt und Gitter, Auflösungsvermögen, Strahlenoptik, Linsen und optische Instrumente).

Literaturhinweise:

W. Bauer, W. Benenson G. Westfall: CliXX Physik CD-Rom (Harri Deutsch, Frankfurt am Main 2004) E.W. Otten: Repetitorium Experimentalphysik (Springer, Heidelberg 2. Aufl. 2002) Tipler, Dransfeld-Kienle, Orear, Metzler (Physik, Oberstufe)

2

November 2008

^{*} Wird in der Bachelor-Prüfungsordnung des importierenden Faches festgelegt.

Studiengang:

Modul: Physik-Lehrveranstaltungen für

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physikalisches

Anfängerpraktikum für

Naturwissenschaftler

LV-Nr.: physik013

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Praktikum	deutsch	4	*	WS/SS

Zulassungsvoraussetzungen:

Erdwissenschaften: bestandene Klausur physik021, Chemie: bestandene Klausur physik012

Andere Fächer: siehe jeweilige Bachelor-Prüfungsordnung

Empfohlene Vorkenntnisse:

Erdwissenschaften: physik021, Chemie: physik011 und physik012 Andere Fächer: siehe jeweilige Bachelor-Prüfungsordnung

Studien- und Prüfungsmodalitäten:

Studienmodalität: Vorbereiten auf physikalische Grundlagen, Durchführen und Auswerten von Experimenten in kleinen Gruppen. Prüfungsmodalität: mündliche Abschlussprüfung

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktische Erfahrungen zum zielgerichteten Experimentieren und Auswerten

Inhalte der LV:

10 Versuche im Praktikum zur Mechanik, Wärmelehre, Elektromagnetismus und Optik Auswahl: Einführungsversuch "Was ist ein Praktikum", Elastizitätskonstanten, Biegung und Knickung, Schwingungen, freie und erzwungene Schwingungen, Trägheitsmoment und physisches Pendel, spezifische Wärmekapazität, Adiabatenkoeffizient, statistische Schwankungen. Gleichströme, Spannungsquellen, Widerstände, elektrolytischer Trog, Fadenstrahlrohr, Linsen und optische Instrumente, Beugung und Interferenz. 2 begleitende Seminare inkl. Einführungsversuch

Literaturhinweise:

W. Walcher; Praktikum der Physik (Teubner, Wiesbaden 8. Aufl. 2004)

D. Geschke; Physikalisches Praktikum (Teubner, Wiesbaden 12. Aufl. 2001)

V. Blobel; Statistische und numerische Methoden der Datenanalyse (Teubner, Wiesbaden 1. Aufl. 1999),

3

E.W. Otten: Repetitorium Experimentalphysik (Springer, Heidelberg 2. Aufl. 2002)

Tipler, Dransfeld-Kienle, Orear, Metzler (Physik , Oberstufe); Mills: Arbeitsbuch zu Tipler/Mosca Physik

max. Teilnehmerzahl: 80 pro Kurs

weitere Informationen: http://pi.physik.uni-bonn.de/~aprakt/

^{*} Wird in der Bachelor-Prüfungsordnung des importierenden Faches festgelegt.

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Geodäten

LV-Nr.: physik014

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Praktikum	deutsch	4	5	WS/SS

Zulassungsvoraussetzungen:

Teilnahme an Klausur zu physik021

Empfohlene Vorkenntnisse:

physik021

Studien- und Prüfungsmodalitäten:

Studienmodalität: Vorbereiten auf physikalische Grundlagen, Durchführen und Auswerten von

Experimenten in kleinen Gruppen

Prüfungsmodalität: mündliche Abschlussprüfung

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktische Erfahrungen zum zielgerichteten Experimentieren und Auswerten

Inhalte der LV:

8 Versuche im Praktikum zur Mechanik, Elektromagnetismus und Optik

Einführungsversuch "Was ist ein Praktikum"; Auswahl: Schwingungen, freie und erzwungene Schwingungen, Trägheitsmoment und physisches Pendel, statistische Schwankungen, RC-Glieder und Schwingkreise, Gleichströme, Spannungsquellen, Widerstände, Linsen und optische Instrumente, Beugung und Interferenz.

1 begleitendes Seminar inkl. Einführungsversuch

Literaturhinweise:

W. Walcher; Praktikum der Physik (Teubner, Wiesbaden 8. Aufl. 2004)

D. Geschke; Physikalisches Praktikum (Teubner, Wiesbaden 12. Aufl. 2001)

V. Blobel; Statistische und numerische Methoden der Datenanalyse (Teubner, Wiesbaden 1. Aufl. 1999),

E.W. Otten: Repetitorium Experimentalphysik (Springer, Heidelberg 2. Aufl. 2002)

Tipler, Dransfeld-Kienle, Orear, Metzler (Physik, Oberstufe)

Mills: Arbeitsbuch zu Tipler/Mosca Physik

max. Teilnehmerzahl: 80 pro Kurs

weitere Informationen: http://pi.physik.uni-bonn.de/~aprakt/

Studiengang:

Modul: Physik-Lehrveranstaltungen für

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physik für Mediziner,

Pharmazeuten und Geodäten

LV-Nr.: physik021

Kategorie	LV-Art	Sprache	sws	LP	Semester
fachspezifisch	Vorlesung mit Übungen	deutsch	3+1	*	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematische Grundkenntnisse

Studien- und Prüfungsmodalitäten:

Abschlussklausur, falls in der Prüfungsordnung vorgesehen

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Studierenden anderer Studiengänge soll grundlegendes Wissen der Physik vermittelt werden. Vorbereitung für ein Physikalisches Praktikum.

Inhalte der LV:

Sehr kompakte Einführung in die Experimentalphysik:

- Physikalische Größen und Einheiten
- Mechanik: Statik und Kinematik starrer Körper
- Kondensierte Materie: Aggregatzustände, Verformungen
- Flüssigkeiten und Gase: Hydrostatik, Grenzflächen, Hydrodynamik, Reale/ideale Gase, Wärme und Temperatur
- Elektrizität und Magnetismus: Widerstand und Ohmsches Gesetz, Kapazität, Wechselspannung, Elektrisches Feld, Materie im elektrischen Feld, Magnetostatik, Elektromagnetismus
- Schwingungen und Wellen: mechanisch / elektromagnetisch, Wellen-ausbreitung und -überlagerung
- Optik: Geometrische Optik, Optische Instrumente, Wellenoptik, Elektronenoptik, Röntgenstrahlen
- Atomphysik: Aufbau des Atoms, Bohr'sches Atommodell, Absorption und Strahlung
- Kern und Elementarteilchenphysik: Aufbau und Bindungsenergie der Kerne, radioaktiver Zerfall

Literaturhinweise:

U. Harten, "Physik für Mediziner"

H. A. Stuart, G. Klages, "Kurzes Lehrbuch der Physik"

5 March 2014

^{*} Wird in der Bachelor-Prüfungsordnung des importierenden Faches festgelegt.

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Biologen

LV-Nr.: physik022

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Praktikum	deutsch	4	4	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

physik011, physik 012 und/oder physik021

Studien- und Prüfungsmodalitäten:

Mitten- und Abschlussklausur; Beurteilung durch Tutor

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktisches Erfahren physikalischer Zusammenhänge. Einführung in Messmethoden, Datenauswertung und Fehlerbehandlung.

Inhalte der LV:

10 Physikalische Versuche:

1: Masse- und Dichtebestimmung; 2: Messung der Zähigkeit von Flüssigkeiten; 3: Gasgesetze/spezifische Wärmekapazität; 4: Ultraschall; 5: Linsen/Mikroskop; 6: Ohmsche Widerstände; 7: Beugung am Gitter/Prismenspektroskop; 8: Wechselstromwiderstände und Schwingkreis; 9: Röntgenstrahlen; 10: Radioaktivität.

Literaturhinweise:

Praktikumsdokumentation und Assistentenanleitung des HIKSP

U. Harten; Physik für Mediziner (Springer, Heidelberg 11 Aufl. 2005)

W. Seibt; Physik für Mediziner (Thieme Vlg., 5. Aufl. 2003)

A. Trautwein, U. Kreibig, J. Hüttermann; Physik für Mediziner, Biologen, Pharmazeuten (de Gruyter, Berlin 6. Aufl. 2004)

V. Harms, Übungsbuch Physik für Mediziner und Pharmazeuten (Harms VIg., Kiel 7. Aufl. 2004)

W. Walcher, D. Kamke; Physik für Mediziner (Teubner, Wiesbaden 1994)

H. Jahrreiß, W. Neuwirth; Einführung in die Physik (Dt. Ärzte-Verlag, 1993)

W. Hellenthal; Physik und ihre Anwendung in der Praxis für Pharmazeuten, Mediziner und Biologen (Urban und Fischer, München 4. Aufl. 1988)

A. Scharmann; Arbeitsbuch Physik für Mediziner und Biologen (Urban und Fischer, München 1981)

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Molekulare Biomediziner

LV-Nr.: physik023

Kategorie	LV-Art	Sprache	sws	LP	Semester
fachspezifisch	Praktikum	deutsch	4	3-4	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Die Vorlesungen "Physik für Naturwissenschaftler I und II " sollten zuvor gehört worden sein und die zugehörigen Übungen sollten erfolgreich absolviert worden sein

Studien- und Prüfungsmodalitäten:

Mitten- und Abschlussklausur; Beurteilung durch Tutor.

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktisches Erfahren physikalischer Zusammenhänge. Einführung in Meßmethoden, Datenauswertung und Fehlerbehandlung.

Inhalte der LV:

10 Physikalische Versuche:

1: Masse- und Dichtebestimmung; 2: Messung der Zähigkeit von Flüssigkeiten; 3: Gasgesetze/spezifische Wärmekapazität; 4: Ultraschall; 5: Linsen/Mikroskop; 6: Ohmsche Widerstände; 7: Beugung am Gitter/Prismenspektroskop; 8: Wechselstromwiderstände und Schwingkreis; 9: Röntgenstrahlen; 10: Radioaktivität.

Literaturhinweise:

Praktikumsdokumentation und Assistentenanleitung des HIKSP

U. Harten; Physik für Mediziner (Springer, Heidelberg 11 Aufl. 2005)

W. Seibt; Physik für Mediziner (Thieme Vlg., 5. Aufl. 2003)

A. Trautwein, U. Kreibig, J. Hüttermann; Physik für Mediziner, Biologen, Pharmazeuten (de Gruyter, Berlin 6. Aufl. 2004)

V. Harms, Übungsbuch Physik für Mediziner und Pharmazeuten (Harms Vlg., Kiel 7. Aufl. 2004)

W. Walcher, D. Kamke; Physik für Mediziner (Teubner, Wiesbaden 1994)

H. Jahrreiß, W. Neuwirth; Einführung in die Physik (Dt. Ärzte-Verlag, 1993)

W. Hellenthal; Physik und ihre Anwendung in der Praxis für Pharmazeuten, Mediziner und Biologen (Urban und Fischer, München 4. Aufl. 1988)

A. Scharmann; Arbeitsbuch Physik für Mediziner und Biologen (Urban und Fischer, München 1981)

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Mediziner

LV-Nr.: physik024

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Praktikum	deutsch	4	4	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Die Vorlesung "Physik für Mediziner, Pharmazeuten und Geodäten" sollte zuvor gehört worden sein

Studien- und Prüfungsmodalitäten:

Mitten- und Abschlussklausur; Beurteilung durch Tutor.

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktisches Erfahren physikalischer Zusammenhänge. Einführung in Meßmethoden, Datenauswertung und Fehlerbehandlung.

Inhalte der LV:

10 Physikalische Versuche:

1: Masse- und Dichtebestimmung; 2: Messung der Zähigkeit von Flüssigkeiten; 3: Gasgesetze/spezifische Wärmekapazität; 4: Ultraschall; 5: Linsen/Mikroskop; 6: Ohmsche Widerstände; 7: Beugung am Gitter/Prismenspektroskop; 8: Wechselstromwiderstände und Schwingkreis; 9: Röntgenstrahlen; 10: Radioaktivität.

Literaturhinweise:

Praktikumsdokumentation und Assistentenanleitung des HIKSP

U. Harten; Physik für Mediziner (Springer, Heidelberg 11 Aufl. 2005)

W. Seibt; Physik für Mediziner (Thieme Vlg., 5. Aufl. 2003)

A. Trautwein, U. Kreibig, J. Hüttermann; Physik für Mediziner, Biologen, Pharmazeuten (de Gruyter, Berlin 6. Aufl. 2004)

V. Harms, Übungsbuch Physik für Mediziner und Pharmazeuten (Harms VIg., Kiel 7. Aufl. 2004)

W. Walcher, D. Kamke; Physik für Mediziner (Teubner, Wiesbaden 1994)

H. Jahrreiß, W. Neuwirth; Einführung in die Physik (Dt. Ärzte-Verlag, 1993)

W. Hellenthal; Physik und ihre Anwendung in der Praxis für Pharmazeuten, Mediziner und Biologen (Urban und Fischer, München 4. Aufl. 1988)

A. Scharmann; Arbeitsbuch Physik für Mediziner und Biologen (Urban und Fischer, München 1981)

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Zahnmediziner

LV-Nr.: physik025

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Praktikum	deutsch	4	4	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Die Vorlesung "Physik für Mediziner, Pharmazeuten und Geodäten" sollte zuvor gehört worden sein

Studien- und Prüfungsmodalitäten:

Mitten- und Abschlussklausur; Beurteilung durch Tutor.

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktisches Erfahren physikalischer Zusammenhänge. Einführung in Meßmethoden, Datenauswertung und Fehlerbehandlung.

Inhalte der LV:

10 Physikalische Versuche:

1: Masse- und Dichtebestimmung; 2: Messung der Zähigkeit von Flüssigkeiten; 3: Gasgesetze/spezifische Wärmekapazität; 4: Ultraschall; 5: Linsen/Mikroskop; 6: Ohmsche Widerstände; 7: Beugung am Gitter/Prismenspektroskop; 8: Wechselstromwiderstände und Schwingkreis; 9: Röntgenstrahlen; 10: Radioaktivität.

Literaturhinweise:

Praktikumsdokumentation und Assistentenanleitung des HIKSP

U. Harten; Physik für Mediziner (Springer, Heidelberg 11 Aufl. 2005)

W. Seibt; Physik für Mediziner (Thieme Vlg., 5. Aufl. 2003)

A. Trautwein, U. Kreibig, J. Hüttermann; Physik für Mediziner, Biologen, Pharmazeuten (de Gruyter, Berlin 6. Aufl. 2004)

V. Harms, Übungsbuch Physik für Mediziner und Pharmazeuten (Harms VIg., Kiel 7. Aufl. 2004)

W. Walcher, D. Kamke; Physik für Mediziner (Teubner, Wiesbaden 1994)

H. Jahrreiß, W. Neuwirth; Einführung in die Physik (Dt. Ärzte-Verlag, 1993)

W. Hellenthal; Physik und ihre Anwendung in der Praxis für Pharmazeuten, Mediziner und Biologen (Urban und Fischer, München 4. Aufl. 1988)

A. Scharmann; Arbeitsbuch Physik für Mediziner und Biologen (Urban und Fischer, München 1981)

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Praktische Übungen in Physik für Pharmazeuten

LV-Nr.: physik026

Kategorie	LV-Art	Sprache	sws	LP	Semester
fachspezifisch	Praktikum	deutsch	4	4	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Die Vorlesung "Physik für Mediziner, Pharmazeuten und Geodäten" sollte zuvor gehört worden sein

Studien- und Prüfungsmodalitäten:

Mitten- und Abschlussklausur; Beurteilung durch Tutor.

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Praktisches Erfahren physikalischer Zusammenhänge. Einführung in Meßmethoden, Datenauswertung und Fehlerbehandlung.

Inhalte der LV:

10 Physikalische Versuche:

1: Masse- und Dichtebestimmung; 2: Messung der Zähigkeit von Flüssigkeiten; 3: Gasgesetze/spezifische Wärmekapazität; 4: Ultraschall; 5: Linsen/Mikroskop; 6: Ohmsche Widerstände; 8: Beugung am Gitter/Prismenspektroskop; 9: Wechselstromwiderstände und Schwingkreis; 11: Röntgenstrahlen; 12: Radioaktivität.

Literaturhinweise:

Praktikumsdokumentation und Assistentenanleitung des HIKSP

U. Harten; Physik für Mediziner (Springer, Heidelberg 11 Aufl. 2005)

W. Seibt; Physik für Mediziner (Thieme Vlg., 5. Aufl. 2003)

A. Trautwein, U. Kreibig, J. Hüttermann; Physik für Mediziner, Biologen, Pharmazeuten (de Gruyter, Berlin 6. Aufl. 2004)

V. Harms, Übungsbuch Physik für Mediziner und Pharmazeuten (Harms VIg., Kiel 7. Aufl. 2004)

W. Walcher, D. Kamke; Physik für Mediziner (Teubner, Wiesbaden 1994)

H. Jahrreiß, W. Neuwirth; Einführung in die Physik (Dt. Ärzte-Verlag, 1993)

W. Hellenthal; Physik und ihre Anwendung in der Praxis für Pharmazeuten, Mediziner und Biologen (Urban und Fischer, München 4. Aufl. 1988)

A. Scharmann; Arbeitsbuch Physik für Mediziner und Biologen (Urban und Fischer, München 1981)

10

weitere Informationen: http://www.hiskp.uni-bonn.de/gruppen/mpraktikum/

November 2008

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physik für Ernährungs- und

Lebensmittelwissenschaften,

Agrarwissenschaften

LV-Nr.: physik041

Kategorie	LV-Art	Sprache	SWS	LP	Semester
fachspezifisch	Vorlesung mit Übungen	deutsch	3+1	6	SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematische Grundkenntnisse

Studien- und Prüfungsmodalitäten:

Abschlussklausur

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Studierenden anderer Studiengänge soll grundlegendes Wissen der Physik vermittelt werden. Vorbereitung für ein Physikalisches Praktikum.

Inhalte der LV:

Sehr kompakte Einführung in die Experimentalphysik:

- Physikalische Größen und Einheiten
- Mechanik: Statik und Kinematik starrer Körper
- Kondensierte Materie: Aggregatzustände, Verformungen
- Flüssigkeiten und Gase: Hydrostatik, Grenzflächen, Hydrodynamik, Reale/ideale Gase, Wärme und Temperatur
- Elektrizität und Magnetismus: Widerstand und Ohmsches Gesetz, Kapazität, Wechselspannung, Elektrisches Feld, Materie im elektrischen Feld, Magnetostatik, Elektromagnetismus
- Schwingungen und Wellen: mechanisch / elektromagnetisch, Wellen-ausbreitung und -überlagerung
- Optik: Geometrische Optik, Optische Instrumente, Wellenoptik, Elektronenoptik, Röntgenstrahlen
- Atomphysik: Aufbau des Atoms, Bohr'sches Atommodell, Absorption und Strahlung
- Kern und Elementarteilchenphysik: Aufbau und Bindungsenergie der Kerne, radioaktiver Zerfall

Literaturhinweise:

U. Harten, "Physik für Mediziner"

H. A. Stuart, G. Klages, "Kurzes Lehrbuch der Physik"

11 March 2014

Nebenfachstudierende

Modul-Nr.: physik010

Lehrveranstaltung: Physikalische Anwendungen in der Medizin

LV-Nr.: physik051

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Wahlfach	Vorlesung	deutsch	2	*	WS/SS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

physik021: Physik für Mediziner oder vergleichbare Grundlagenkenntnisse

Studien- und Prüfungsmodalitäten:

benotete Leistungsüberprüfung

Dauer der Lehrveranstaltung:

1 Semester

Lernziele der LV:

Verständnis der physikalischen Grundlagen medizinischer Geräte und Verfahren, physikalische Grenzen von Analyseverfahren, Auflösung, Genauigkeiten.

Inhalte der LV:

Einordnung physikalischer Verfahren in der Medizin: Mechanisch, optisch, elektromagnetisch, Strahlungsbasiert, in Bildgebung, anatomischer und funktionaler Diagnose, Therapie; physikalische Grundlagen, Auflösung verschiedener Verfahren, Anwendungsgebiete und Grenzen, Apparate.

Literaturhinweise:

Werden in der Vorlesung bekannt gegeben

12 July 2011

^{*} Wird in der Bachelor-Prüfungsordnung des importierenden Faches festgelegt.