Module:

Elective Advanced Lectures: Modern Astrophysics

Module No.: astro850

Course:

Numerical Dynamics

Course No.: astro854

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	2+1	4	ST

Requirements for Participation:

Preparation:

Form of Testing and Examination:

Requirements for the examination (written): successful work with exercises and programming tasks

Length of Course:

1 semester

Aims of the Course:

The students will have to familiarize themselves with the various numerical recipes to solve the coupled 2nd-order differential equations as well as with the limitations of these methods

Contents of the Course:

The two-body problem and its analytical solution. Ordered dynamics: integration of planetary motion, solar system, extra-solar planets. Collisional dynamics: integration of stellar orbits in star clusters, star-cluster evolution. Collisionless dynamics: integration of stellar orbits in galaxies, cosmological aspects

Recommended Literature:

Write-up of the class; S. J. Aarseth; Gravitational N-body simulations: Tools and Algorithms (Cambridge University Press, 2003)