Module No.: Credit Points (CP): Category: Semester: physics605 7 Required 7.

Module: Base Module Theoretical Physics

Module Elements:

Nr.	Course Title	Number	СР	Туре	Workload	Sem.
1.	Advanced Quantum Theory	physics606	7	Lect. + ex.	210 hrs	WT
2.	Advanced Theoretical Physics	physics607	7	Lect. + ex.	210 hrs	WT

Requirements:

Preparation:

Content:

The course provides fundamental knowledge needed for theoretical lectures in the Master course

Aims/Skills:

The M.Sc. Physics programme includes one obligatory module for all students. It includes a theoretical unit to extend the B.Sc. in Physics knowledge

Form of Testing and Examination:

Requirements for the module examination (written examination): successful work with exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure:

s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Note: When the student has (upon admission) demonstrated satisfactory knowledge of Advanced Quantum Theory already, the class Advanced Theoretical Physics may be taken instead

Module:

Base Module Theoretical Physics

Module No.: physics605

Course:

Advanced Quantum Theory

Course No.: physics606

Category	Туре	Language	Teaching hours	СР	Semester
Required	Lecture with exercises	English	3+2	7	WT

Requirements:

Preparation:

Theoretical courses at the Bachelor degree level

Form of Testing and Examination:

Requirements for the module examination (written examination): successful work with exercises

Length of Course:

1 semester

Aims of the Course:

Ability to solve problems in relativistic quantum mechanics, scattering theory and many-particle theory

Contents of the Course:

Born approximation, partial waves, resonances advanced scattering theory: S-matrix, Lippman-Schwinger equation relativistic wave equations: Klein-Gordon equation, Dirac equation representations of the Lorentz group many body theory second quantization basics of quantum field theory path integral formalism Greens functions, propagator theory

Recommended Literature:

L. D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.3 Quantum Mechanics (Butterworth-Heinemann 1997)

J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley 1995)

F. Schwabl, Advanced Quantum Mechanics. (Springer, Heidelberg 3rd Ed. 2005)

Module:

Base Module Theoretical Physics

Module No.: physics605

Course:

Advanced Theoretical Physics

Course No.: physics607

Category	Туре	Language	Teaching hours	СР	Semester
Elective	Lecture with exercises	English	3+2	7	WT

Requirements:

Preparation:

3-year theoretical physics course with extended interest in theoretical physics and mathematics

Form of Testing and Examination:

Requirements for the module examination (written examination): successful work with exercises

Length of Course:

1 semester

Aims of the Course:

Introduction to modern methods and developments in Theoretical Physics in regard to current research

Contents of the Course:

Selected Topics in Modern Theoretical Physics for example: Anomalies Solitons and Instantons Quantum Fluids Bosonization Renormalization Group Bethe Ansatz Elementary Supersymmetry Gauge Theories and Differential Forms Applications of Group Theory

Recommended Literature:

M. Nakahara; Geometry, Topology and Physics (Institute of Physics Publishing, London 2nd Ed. 2003) R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland Personal Library, Amsterdam 3rd reprint 2003)

A. M. Tsvelik; Quantum Field Theory in Condensed Matter Physics (Cambridge University Press 2nd Ed. 2003)

A. Zee; Quantum Field Theory in a Nutshell (Princeton University Press 2003)