6783 | Reaktorphysik / Reactor Physics (D/E) Mo 11 - 13, HS, ISKP |
Dozent(en): | P.-D. Eversheim, R. Jahn | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Keine | |
Inhalt: | Nach einer kurzen Einführung in die Grundlagen des Zerfalls radioaktiver Kerne und den Reaktionen von Neutronen mit Kernen, werden die Bedingungen diskutiert unter denen ein Kernreaktor erst funktioniert. Bei der anschließenden Vorstellung spezieller Reaktortypen werden auch Konzepte von Sicherheitsmaßnahmen erläutert. | |
Literatur: | R. Schulten und W. Güth Reaktorphysik I und II BI Hochschultaschenbücher (Mannheim 1960, 1962) W. Oldekop Einführung in die Kernreaktor- und Kernkraftwerkstechnik I und II Thiemig (München 1975) Albert Ziegler Lehrbuch der Reaktortechnik Band 1 (Reaktortheorie) Band 2 (Reaktortechnik) Springer (Berlin Heidelberg New York Tokyo 1983) | |
Bemerkungen: |
6784 | Laserphysik / Laser Physics (D/E) Mi 10 - 12, HS, IAP |
Instructor(s): | R. Wynands | |
For terms no.: | 6 | |
Hours per week: | 2 | |
Prerequisites: | Quantum mechanics | |
Contents: | The laser, invented about 40 years ago, has now become an essential part of our civilization, not only in
science and industry but also in everyday life (laser pointer, CD/DVD player). But how does it really work? If you want to
know, come and see! In order to understand the principle of a laser we need to start with topics such as the resonant interaction of light and matter, optical modes and resonators, laser dynamics. In the second half of the semester we'll discuss some important examples of specific laser types, such as solid-state lasers, helium-neon lasers, and diode lasers. There will be demonstration experiments (some even "hands-on") in class that will illustrate the key concepts and characteristics of lasers. | |
Literature: | A. E. Siegman: Lasers (University Science Books) A. Yariv: Quantum Electronics (Wiley) F. K. Kneubühl, M. W. Sigrist: Laser (Teubner) D. Meschede: Optik, Licht und Laser (Teubner) | |
Comments: |
6785 | Teilchenbeschleuniger II / Particle Accelerators, Part II (D/E) Di, Do 12, HS, ISKP |
Instructor(s): | F. Hinterberger | |
For terms no.: | 5.-8. | |
Hours per week: | 2 | |
Prerequisites: | Basics of Mechanics and Electrodynamics Particle Accelerators, Part I | |
Contents: | Transverse beam dynamics in particle accelerators Particle acceleration and longitudinal beam dynamics Perturbations in beam dynamics Injection and extraction Hamiltonian formulation of beam dynamics Particle distribution in phase space Beam cooling: electron cooling and stochastic cooling | |
Literature: | F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik Springer Verlag, Heidelberg (1997) H. Wiedemann: Particle Accelerator Physics Springer Verlag, Heidelberg (1993) H. Wiedemann: Particle Accelerator Physics II Springer Verlag, Heidelberg (1995) K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen Teubner Verlag, Stuttgart (1992) A. A. Kolomensky and A. N. Lebedev: Theory of cyclic accelerators North-Holland Publishing Company, Amsterdam (1966) | |
Comments: | Wahlpflichtvorlesung "Angewandte Physik" ECTS points: 4 |
6786 | Photonik - Integrierte Optik / Photonics - Integrated Optics (D/E) (s. auch 6816) Mi 8 - 10, HS, IAP |
Instructor(s): | K. Buse | |
For terms no.: | ab 5. Fachsemester | |
Hours per week: | 2 | |
Prerequisites: | no special knowledge is required to attend the course | |
Contents: | The course will cover photonics and integrated optics. This involves semiconductor lasers, optical waveguides, detectors, and applications of such devices. In particular the following issues will be covered: Light in semiconductors, light absorption, spontaneous and stimulated emission, Kramers-Kronig-relations, energy bands, direct and indirect electron transitions, laser threshold, simple laser diodes, hetero-junction lasers, distributed-feedback lasers, epitaxy, requirements for waveguides, modes, production of waveguides, losses in waveguides, input and output coupling, coupling of light between two neighboring waveguides, electro-optic and acousto-optic modulators, Franz-Keldysh effect, construction and function of integrated-optical light detectors, optical networks, wavelength-division-multiplexing, optical interconnects, signal analysis, signal conversion, optoelectronics. The aim is to give an overview over the field and to stimulate own, creative solutions of demanding problems. Thus the course can be of interest for all students after the "Vordiplom" or "Zwischenprüfung" but might be also useful for PhD students. | |
Literature: | Henning Fouckhardt, "Photonik", Teubner 1994, ISBN 3-519-03099-3 Robert G. Hunsperger, "Integrated Optics", Springer 1995, ISBN 3-540-59481-7 | |
Comments: |
6787 | Durchgang von Teilchen durch Materie und Detektoren / Interaction of Particles with Matter; Detector
Principles (D/E) (s. auch 6813) Do 14 - 16, SR, ISKP |
Dozent(en): | P.-D. Eversheim, R. Jahn, W. Schwille | |
Fachsemester: | 6-8 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Atomphysik, Kern- oder Teilchenphysik | |
Inhalt: | Mit dieser Vorlesung soll dem von studentischer Seite geäußerten Wunsch entsprochen werden, wichtige experimentelle Techniken und Konzepte der Kern- und Teilchenphysik ausführlicher zu behandeln, als dies in den Kursvorlesungen oder Praktika geschehen kann. Diese Vorlesung beabsichtigt einerseits einen Überblick über übliche Nachweismethoden zu geben und andererseits mögliche, damit verknüpfte experimentelle Probleme und deren Lösungen herauszuarbeiten. In diesem Zusammenhang wird die Anwendung typischer Detektoren erklärt und zum Beispiel folgende Themen ausführlich diskutiert: Die Teilchenidentifikation von internen- und externen Beschleunigerexperimenten, Messungen mit polarisierten Teilchen, als auch Signalkonditionierung und Datenaufnahme. Theoretische Aspekte werden nur behandelt soweit es für das Verständnis der experimentellen Konzepte nötig ist. | |
Literatur: | K. Kleinknecht, Detektoren für Teilchenstrahlung (Teubner Studienbücher 1984) W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer 1994) Lehrbücher der Kern- und Teilchenphysik | |
Bemerkungen: |
6936 | Radioastronomische Meßtechnik II: Interferometrie und Apertursynthese (D/E) Di 14 - 16, Raum 1.12, AI |
Dozent(en): | U. Klein | |
Fachsemester: | Hauptstudium | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Radioastronomische Messtechnik I, Fouriertheorie, Koordinatensysteme | |
Inhalt: | 1. Radioastronomische Anwendungen der Fouriertheorie 2. Prinzip des korrelierten Zwillingsinterferometers 3. Apertursynthese 4. Teleskoptypen 5. Datenverarbeitung, Fehlerdiagnose 6. VLBI 7. Spektroskopische Interferometrie | |
Literatur: | Kraus: "Radio Astronomie", Cygnus Quasar Books, Christiansen & Högbom: "Radio Telescopes", Cambridge Univ. Press., Thompson, Moran, Swenson: "Interferometry and Synthesis in Radio Astronomy", Wiley Interscience, Bracewell: "The Fourier Transform and its Applications", Mc Graw Hill | |
Bemerkungen: | Teilnahme am Teil I der Vorlesung ist empfehlenswert, aber nicht unabdingbar. Prüfungs- Vorlesung für das Fach Angewandte Physik. |
6937 | Wellenoptik und astronomische Anwendungen Mi 16.00 - 17.30, HS Astronomie |
Dozent(en): | G. Weigelt | |
Fachsemester: | ab 3. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | keine | |
Inhalt: | Wellenoptik (Beugungstheorie, Linseneigenschaften, Abbildungstheorie) Digitale Bildverarbeitung Michelson-Interferometrie Speckle-Interferometrie Knox-Thompson-Methode Speckle-Masking-Metho de Interferometrische Spektroskopie Optische Long-Baseline-Interferometrie Phase-Closure-Methode | |
Literatur: | J.W. Goodmann, Statistical Optics (Wiley Interscience) J.W. Goodmann, Fourier Optics (McGraw Hill) | |
Bemerkungen: |
6788 | Medizinische Physik: Neurophysik / Medical Physics: Neurophysics (D/E) Mo 9 -11, Fr 9, SR, ISKP |
Instructor(s): | P. David, K. Lehnertz | |
For terms no.: | 5-8 | |
Hours per week: | 3 | |
Prerequisites: | Vordiplom | |
Contents: | - The Nervous System - Nerve Cells - Potentials - Channels - Voltage-Clamp Method - Patch-Clamp Method - Models; Hodgkin-Huxley Theory - Neuronal Integration - Rall-Theory - Membrane-Noise at Synaptic Junctions - Electrical and Magnetic Poperties of the Brain/EEG, MEG and Evoked Potentials | |
Literature: | 1. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Eds. Principles of Neural Science, Elsevier, 2nd Edt. 2. B. Hille Ionic Channels of Excitable Membranes, Sinauer Associates Inc., 3. Ed. | |
Comments: | Location: Seminarraum ISKP Time: Monday, 9:00 c.t., beginning Mo 23.04.2001, 9:00 Preliminary discussion: Tuesday 17.04.2001, 14:00 c.t. |
6789 | Materialphysik II / Physics of Materials, Part II (D/E) Fr 8 - 10, SR, ITKP |
Instructor(s): | M. Moske | |
For terms no.: | 7,8 | |
Hours per week: | 2 | |
Prerequisites: | Basic knowledge of Solid State Physics and thermodynamics | |
Contents: | Introduction to the basics of Physics of Materials, part II, containing the following topics: - Atomic transport in solids - Decomposition and ordering transformations - Solid state reactions and metastable phases - Elastic properties of solids (basics) - Dislocations, plastic deformation and recrystallization - Alloy hardening - Physical properties of alloys and their applications | |
Literature: | P. Haasen, Physikalische Metallkunde, Springer 1994 H. Böhm, Einführung in die Metallkunde, BI Taschenbücher 1968 G. Gottstein, Physikalische Grundlagen der Materialkunde, Springer 1998 G.E.R. Schulze, Metallphysik, Akademie-Verlag 1967 E. Hornbogen, H. Warlimont, Metallkunde, 1995 | |
Comments: |
6790 | Anwendungen der Synchrotronstrahlung in Materialwissenschaften / Material Science and Synchrotron
Radiation (D/E) Blockvorlesung, 3 Wochen lang im Anschluss an die Vorlesungszeit, Juli / August 2001 |
Instructor(s): | J. Hormes, H. Modrow | |
For terms no.: | >5 | |
Hours per week: | entsprechend 2SWS; täglich vom 23.07. bis 10.08. | |
Prerequisites: | Quantum Mechanics I, FP I, Atomic Physics, Basics of Condensed Matter Physics | |
Contents: | The course will provide an overview about synchrotron radiation (SR) techniques, focussing mainly on their
applications to Material Science. Some of the main topics will be for example: *properties of SR *basics of SR instrumentation *small angle scattering *X-ray tomography *X-ray topography *powder diffraction techniques *EXAFS *XANES *X-ray fluorescence *XPS *grazing incidence techniques | |
Literature: | B.K. Agarwal "X-ray spectroscopy" (difficult to get hold of) Vorlesungsmanuskripte zum 23- IFF-Ferienkurs des FZ Jülich (contact H. Modrow for details) | |
Comments: | If you are interested or have further questions, please contact H.Modrow (PI K44, Tel:733203, e-mail:
modrow@physik.uni-bonn.de) for optimization of dates and schedule. The course provides (part of) the basis for taking an Applied Physics exam on SR-techniques. |
6791 | Nichtlineare Optik / Nonlinear Optics (D/E) Do 10 - 12, HS, IAP |
Dozent(en): | D. Meschede | |
Fachsemester: | ab 6. Fachsemester | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Elektrodynamik, Quantenmechanik, Atomphysik, Optik | |
Inhalt: | Siehe Webpage http://www.uni-bonn.de/iap/lehre/ss01_nlo/NLO/frames.html | |
Literatur: | Siehe Webpage | |
Bemerkungen: | Siehe Webpage |
6889 | Quantum Optics Summer School 20. - 31. 8. 2001. Zählt als Wahlpflichtvorlesung "Angewandte Physik" 2 st |
Instructor(s): | D. Meschede, H. Giessen | |
For terms no.: | >7 | |
Hours per week: | ||
Prerequisites: | Atomic Physics / Laser Physics / Quantum Optics | |
Contents: | The courses have tutorial character and treat theoretical and experimental aspects of modern optics,
cavity quantum electrodynamics, quantum optics, quantum information processing, and matter wave physics. ECTS credit points available after a written test. This course is part of the regular Physics programme of the University of Bonn (Wahlpflichtveranstaltung Angewandte Physik). | |
Literature: | ||
Comments: | The number of participants is limited to 35. Selection is based on the academic achievements of the
candidates. Contact: Prof. D. Meschede Institut für Angewandte Physik Wegelerstr. 8 53115 Bonn Tel.: +49-228-73-3477 meschede@iap.uni-bonn.de |
6792 | Molekülphysik / Molecular Physics (D/E) Fr 10 - 12, HS 118, AVZ I |
Instructor(s): | F. Kühnemann | |
For terms no.: | 6,8 | |
Hours per week: | 2 | |
Prerequisites: | Quantum Mechanics, Atomic Physics | |
Contents: | How do plants manage it to collect light so efficiently and convert it into chemical energy? These and other questions we will try to answer during the course "Molecular Physics". We will look at the properties of the molecules involved in this process, starting from basic principles and aiming at the complex biomolecules and their properties. | |
Literature: | P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics and other references given during the course | |
Comments: |
6793 | Teilchen-Astro-Physik und Kosmologie / Particle Astro-Physics and Cosmology (D/E) (auch Vert. "Theor.
Physik") Mo 11 -13, Mi 12, HS I, PI |
Instructor(s): | U. Klein, H.-P. Nilles, N. Wermes | |
For terms no.: | 6 | |
Hours per week: | 3 | |
Prerequisites: | ||
Contents: | Introduction - cosmology = astronomy + particle physics + thermodymanics ... - reasons and evidences for BB-ansatz, some numbers, Hubble expansion, redshift (naive), - Hubble law (naive), CMB intro (very short), Olbers Paradox, cosmological Principle Standard Cosmology - basics - curved space, spacetime metric, Robertson-Walker metric, redshift, Hubble law, scale factor, distance measures, age determinations - world models - Friedman cosmology (Lambda = 0), Einstein's field eqns, Friedman-eqns, special models (Einstein de Sitter, etc.), critical density, density parameter, deceleration parameter, expansion rate and behaviour in early and late universe - the cosmological constant - supernova watch, extension to Friedman eqns, cosmic sum rule, cosmic triangle, exponential solutions for dominant Lambda (inflation) - problems of the standard cosmology Particle Physics - standard model (short), lepton sector, quark sector, CKM, symmetry breaking, Higgs mechanism, running couplings, U(1) problem, axions, CP-violation, problems of the standard model - supersymmetry, GUTs, key experiments to what we know about the standard model some LEP results, colour Thermodynamics in the Universe - energy density and pressure, eqn. of state, extreme cases (matter or radiation dominance), expansion rate and behaviour in early and late universe (calculate it), entropy, quantum statistics (degrees of freedom), energy and number densities, neutrino decoupling, phase transitions, reheating, BB evolution as a sequence of phase transitions, Nucleosynthesis - light elements abundances, role of deuterium, measurements Cosmic Microwave Background - CMB observations (COBE, MAXIMA, Boomerang), spectrum, sound waves, l-peaks, SZ-effect, evolution of fluctuations Dark Matter - galaxy rot. curves, lensing, CMB anisotropy (short, results only), xray halos, machos, wimps Inflation Scenarios - need for inflationary models (flatness, horizon, smoothness, monopole problem) standard inflation (Guth), higgs field, chaotic inflation (Linde), reheating, wormholes, quintessence Structure Formation - evolution of fluctuations, hot and cold matter scenarios Theoretical Advances - superstrings, what else? | |
Literature: | M. Roos, Introduction to Cosmology, 2nd edition, Wiley 1997 J. Bernstein, Introduction to Cosmology, Prentice Hall 1998 M.S. Longair, Galaxy Formation, Springer 1998 M. Rowan-Robinson, Cosmology, Clarendon Press 1998 G. Börner, The Early Universe, Springer 1993 H.V. Klapdor-Kleingrothaus / K. Zuber, Teilchenastrophysik, Teubner 1997 | |
Comments: |
6794 | Hadronen- und Kernphysik / Hadron and Nuclear Physics (D/E) Mi 10 - 12, HS, ISKP Beginn: 25.4. |
Instructor(s): | A. Gillitzer, R.W. Gothe | |
For terms no.: | 6 and more (incl. SS01) | |
Hours per week: | 2 | |
Prerequisites: | Quantum Mechanics Nuclear Physics | |
Contents: | - Study of nuclear structure with electromagnetic probes: charge and mass distribution - interaction of hadrons with nuclei: hypernuclei, hadronic atoms - phase transitions of nuclear matter: relativistic heavy ion collisions, quark gluon plasma - quark structure of mesons and baryons - investigation of the nucleon and nucleon resonances: structures and interactions - near-threshold production of mesons | |
Literature: | - H. Frauenfelder, E.M. Henley, Teilchen und Kerne / Subatomic Physics (1999) - B.R. Martin, G. Shaw, Particle Physics (1997) - D. Griffiths, Introduction to Elementary Particles (1987) - B. Povh, K. Rith, C. Scholz, F. Zetsche, Teilchen und Kerne (1999) - T. Ericson, W. Weise, Pions and Nuclei (1988) - A.W. Thomas, W. Weise, The Structure of the Nucleon (2000) | |
Comments: | The lecture addresses modern topics in nuclear and hadron physics and the experimental methods to investigate them, using electron, proton, and heavy ion beams. |
6795 | Kernstruktur / Nuclear structure (D/E) Mi 8 - 10, HS, ISKP |
Instructor(s): | H. Hübel | |
For terms no.: | 6 | |
Hours per week: | 2 | |
Prerequisites: | Vorlesung: Kernphysik Lecture: Nuclear Physics | |
Contents: | Bevölkerung angeregter Kernzustände Experimentelle Methoden der Kernspektroskopie (Detektoren, Spektrometer, Nukleare Elektronik) Grundlegende Experimente (Koinzidenztechnik, Lebensdauermessung, Winkelkorrelationen, Kernorientierung, Konversionselektronen, Mössbauereffekt) Hochspinspektroskopie, Anregungstypen, Rotationsbanden, Superdeformation, Magnetische Rotation Kernmodelle (Schalenmodell, Nilssonmodell, Crankingmodell) Population of excited nuclear states Methods of nuclear spectroscopy (detectors, spectrometers, nuclear electronics) Basic experiments (coincidence technique, lifetime measurements, angular correlation, nuclear orientation, conversion electrons, Mössbauer effect) High-spin spectroscopy, types of excitation, rotational bands, superdeformation, magnetic rotation) Nuclear models (shell model, Nilsson model, cranking model) | |
Literature: | W.R Leo, Techniques for Nuclear and Particle Physics Experiments K. Siegbahn, Alpha-, Beta- and Gamma-Ray Spectroscopy E. Bodenstedt, Experimente der Kernphysik und ihre Deutung T. Mayer-Kuckuk, Kernphysik | |
Comments: |
6796 | Quantentheorie II Di, Do 8 - 10, HS I, PI |
Dozent(en): | H. Monien | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 4 | |
Voraussetzungen: | Quantenmechanik, Elektrodynamik und Mechanik, mathematisches Minimum (Infinitesimalrechnung, Lineare Algebra, Differentialgleichungen, elementare Funktionentheorie) | |
Inhalt: | - Pfadintegraldarstellung der Quantenmechanik - Theorie der Symmetrie - zweite Quantisierung - Relativistische Quantenmechanik - Vielteilchentheorie | |
Literatur: | J. J. Sakurai: Modern Quantummechanics + Advanced Quantum Mechanics J. W. Negele and H. Orland: Quantum Many-Particle Systems G. Baym: Quantum Mechanics Landau & Lifshitz: Quantenmechanik Feynman, Hibbs: Pathintegral | |
Bemerkungen: | In dieser Vorlesung wird eine modernere und anschaulichere Darstellung der Quantenmechanik
eingeführt, die eine Verallgemeinerung auf komplexere Fragestellungen zulässt. Die Vorlesung behandelt Fragestellungen, die sowohl für die statistische Physik, als auch für das Verständnis der Elementarteilchenphysik relevant sind. Die Übungen sind integraler Bestandteil der Vorlesung und für das Verständnis der Vorlesung unabdingbar! |
6797 | Übungen zu 6796 2 st in Gruppen |
Dozent(en): | H. Monien u.M. | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Quantenmechanik, Elektrodynamik und Mechanik, mathematisches Minimum (Infinitesimalrechnung, Lineare Algebra, Differentialgleichungen, elementare Funktionentheorie) | |
Inhalt: | - Pfadintegraldarstellung der Quantenmechanik - Theorie der Symmetrie - zweite Quantisierung - Relativistische Quantenmechanik - Vielteilchentheorie | |
Literatur: | J. J. Sakurai: Modern Quantummechanics + Advanced Quantum Mechanics J. W. Negele and H. Orland: Quantum Many-Particle Systems G. Baym: Quantum Mechanics Landau & Lifshitz: Quantenmechanik Feynman, Hibbs: Pathintegral | |
Bemerkungen: | Die Übungen sind integraler Bestandteil der Vorlesung und für das Verständnis der Vorlesung unabdingbar! |
6798 | Advanced Quantum Mechanics Tu, Th 10 - 12, HS, ISKP |
Instructor(s): | M.G. Huber, B. Metsch | |
For terms no.: | 6 | |
Hours per week: | 4(+2) | |
Prerequisites: | Quantum Mechanics | |
Contents: | Quantum-Many-body systems: Structure non-relativistic many-particle systems. Born-Oppenheimer and Hartree-Fock approximation. Fock-space, second quantisation and Wick's rule. Green's functions. Feynman's perturbation theory. Path-integral method. Relativistic quantum mechanics: Spin-0 particles and the Klein-Gordon equation. Spin-1/2 particles and the Dirac equation. Quantum mechanical interpretation of the Maxwell-equations. Minimal coupling. Relativistic Hydrogen-atom. Non-relativistic limit: spin-orbit coupling and anomalous magnetic moment of the electron. Propagator theory and Feynman-diagrams. | |
Literature: | (1) J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, 1967 (2) J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, 1964 (3) J.W. Negele, H. Orland, Quantum Many-Particle Systems, Addison-Wesley, 1988 (4) C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980 | |
Comments: |
6933 | Theoretische Methoden der Extraterrestrischen Physik II Mi 14 - 16, HS Astronomie |
Dozent(en): | G. Prölß | |
Fachsemester: | Hauptstudium | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Vordiplom | |
Inhalt: | 1. Magnetosphäre (Innere Magnetosphäre; Teilchenbewegung im Dipolfeld der Erde;
Plasmapopulationen der inneren Magnetosphäre; äußere Magnetosphäre; Plasmapopulationen der
äußeren Magnetosphäre) 2. Interplanetares Medium (Sonnenkorona; Sonnenwind; interplanetares Magnetfeld; Wechselwirkung mit interstellarem Medium) 3. Solar-terrestrische Beziehungen (Energietransfer Sonnenwind-Magnetosphäre; elektrische Felder und Ströme in der polaren Hochatmosphäre; Polarlichter; magnetische, thermosphärische und ionosphärische Stürme; Sonneneruptionseffekte) | |
Literatur: | Vorlesungsskript | |
Bemerkungen: | Die Vorlesung ist für eine relativ breite Zuhörerschaft gedacht. Sie orientiert sich an dem
Prinzip, daß im Konfliktfall die Anschaulichkeit der formalen Strenge vorgezogen wird. |
6800 | Einführung in die theoretische Hadronenphysik / Introduction to Theoretical Hadron Physics Mo 11 - 13, HS, IAP |
Instructor(s): | S. Krewald | |
For terms no.: | ab 6. | |
Hours per week: | 2 | |
Prerequisites: | Quantum mechanics | |
Contents: | 1. Introduction to Feynman rules 2. Tree level diagrams and beyond 3. Introduction to Quantum Chromodynamics 4. Dispersion relations 5. Non-perturbative methods in hadron physics: relativistic two-body equations | |
Literature: | 1. Renton: An Introduction to the physics of quarks and leptons, Cambridge University Press 2.Bjorken, Drell: Relativistic Quantum Mechanics ( I + II ) 3.Weinberg: The Quantum Theory of Fields 4.Gross: Relativistic Quantum Mechanics and Field Theory | |
Comments: |
6793 | Teilchen-Astro-Physik und Kosmologie / Particle Astro-Physics and Cosmology (D/E) (auch Vert. "Theor.
Physik") Mo 11 -13, Mi 12, HS I, PI |
Instructor(s): | U. Klein, H.-P. Nilles, N. Wermes | |
For terms no.: | 6 | |
Hours per week: | 3 | |
Prerequisites: | ||
Contents: | Introduction - cosmology = astronomy + particle physics + thermodymanics ... - reasons and evidences for BB-ansatz, some numbers, Hubble expansion, redshift (naive), - Hubble law (naive), CMB intro (very short), Olbers Paradox, cosmological Principle Standard Cosmology - basics - curved space, spacetime metric, Robertson-Walker metric, redshift, Hubble law, scale factor, distance measures, age determinations - world models - Friedman cosmology (Lambda = 0), Einstein's field eqns, Friedman-eqns, special models (Einstein de Sitter, etc.), critical density, density parameter, deceleration parameter, expansion rate and behaviour in early and late universe - the cosmological constant - supernova watch, extension to Friedman eqns, cosmic sum rule, cosmic triangle, exponential solutions for dominant Lambda (inflation) - problems of the standard cosmology Particle Physics - standard model (short), lepton sector, quark sector, CKM, symmetry breaking, Higgs mechanism, running couplings, U(1) problem, axions, CP-violation, problems of the standard model - supersymmetry, GUTs, key experiments to what we know about the standard model some LEP results, colour Thermodynamics in the Universe - energy density and pressure, eqn. of state, extreme cases (matter or radiation dominance), expansion rate and behaviour in early and late universe (calculate it), entropy, quantum statistics (degrees of freedom), energy and number densities, neutrino decoupling, phase transitions, reheating, BB evolution as a sequence of phase transitions, Nucleosynthesis - light elements abundances, role of deuterium, measurements Cosmic Microwave Background - CMB observations (COBE, MAXIMA, Boomerang), spectrum, sound waves, l-peaks, SZ-effect, evolution of fluctuations Dark Matter - galaxy rot. curves, lensing, CMB anisotropy (short, results only), xray halos, machos, wimps Inflation Scenarios - need for inflationary models (flatness, horizon, smoothness, monopole problem) standard inflation (Guth), higgs field, chaotic inflation (Linde), reheating, wormholes, quintessence Structure Formation - evolution of fluctuations, hot and cold matter scenarios Theoretical Advances - superstrings, what else? | |
Literature: | M. Roos, Introduction to Cosmology, 2nd edition, Wiley 1997 J. Bernstein, Introduction to Cosmology, Prentice Hall 1998 M.S. Longair, Galaxy Formation, Springer 1998 M. Rowan-Robinson, Cosmology, Clarendon Press 1998 G. Börner, The Early Universe, Springer 1993 H.V. Klapdor-Kleingrothaus / K. Zuber, Teilchenastrophysik, Teubner 1997 | |
Comments: |
6934 | Einführung in die theoretische Astrophysik II / Introduction to theoretical Astrophysics II
(D/E) Di 16.30 - 18.00, HS 0.01, MPIfR Beginn: 24.4. |
Instructor(s): | P. Schneider | |
For terms no.: | ab 6. | |
Hours per week: | 2+1 | |
Prerequisites: | Vordiplomkenntnisse | |
Contents: | Radiation processes, diffusion and acceleration of cosmic rays, accretion discs, stellar dynamics | |
Literature: | Lecture notes will be distributed, special literature recommended during the course | |
Comments: |
6801 | Einführung in die Supersymmetrie / Introduction to Supersymmetry (D/E) Mi 14 - 16, SR I, PI |
Dozent(en): | E. Kraus | |
Fachsemester: | 7, 8 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Quantenfeldtheorie | |
Inhalt: | - Supersymmetrie-Algebra und Lorentzgruppe - Einfache supersymmetrische Modelle: Wess-Zumino-Modell Supersymmetrische QED im Superraum und in der Wess-Zumino-Eichung weiche Brechungen minimales supersymmetrisches Standardmodell - Einfache Beispiele für Loop-Korrekturen (Nichtrenormierungstheoreme) | |
Literatur: | J. Wess, J. Bagger, Supersymmetry and supergravity Princeton University Press 1983 M.F. Sohnius, Introducing supersymmetry Phys. Reps. 128 C (1985) 39. H.P.Nilles, Supersymmetry and phenomenology Phys. Reps. 110 C (1984) 1. | |
Bemerkungen: |
6803 | Gravitationstheorie / Theory of Gravitation (D/E) Fr 8 - 10, HS I, PI |
Dozent(en): | W. Nahm | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | relativistische Mechanik Elektromagnetismus Differential- und Integralrechnung auf Mannigfaltigkeiten | |
Inhalt: | Geometrie Riemannscher Mannigfaltigkeiten Einsteingleichungen Beobachtungen und Experimente Schwarze Löcher Gravitationswellen kosmologisch relevante Lösungen | |
Literatur: | Robert M. Wald, General Relativity Steven Weinberg, Gravitation and Cosmology C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation | |
Bemerkungen: |
6804 | Gruppentheoretische Anwendungen in der theoretischen Physik / Applications of Group Theory in
Theoretical Physics (D/E) Fr 10 - 12, HS, ISKP |
Dozent(en): | H.-R. Petry | |
Fachsemester: | 6 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Lineare und multilineare Algebra Quantenmechanik I/II | |
Inhalt: | Mathematische Grundlagen: endliche und kompakte Gruppen, Gruppendarstellungen und Gruppencharaktere, Permutationsgruppe und unitäre Gruppe, Tensorprodukte von Darstellungen, Liegruppen und Liealgebren. Physikalische Anwendungen: Fundamentale Symmetriegruppen der Physik, Mehrelektronensysteme, Kristalle, Quarkmodelle und gruppentheoretische Klassifikation der Hadronen, Eichtheorien der fundamentalen Wechselwirkungen. | |
Literatur: | B.G.Wybourne: Classical Groups for Physicists, Wiley, N.Y. A.O.Barut and R.Racska: Theory of group representations and applications, PWM Warschau. F.Close: An introduction to Quarks and Partons, Academic Press, N.Y. | |
Bemerkungen: | The lecture will be held in english if there is a qualified demand for it |
6805 | Komplexe Systeme: Physik der Finanzmärkte / Complex Systems: An introduction to Econophysics Do 16 - 18, SR, ITKP |
Dozent(en): | G. Schütz | |
Fachsemester: | ab 7. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Quantenmechanik, statistische Mechanik (Grundlagen) | |
Inhalt: | Grundkonzepte der Wahrscheinlichkeitstheorie, Brownsche Bewegung, Levy-Verteilungen, Zeitkorrelationen, Black-Scholes-Theorie, Risiken, Selbstorganisation und kritische Phänomene, Modellierung komplexer Systeme, idealisierte Modelle für Finanzmärkte | |
Literatur: | W. Paul und J. Baschnagel, Stochastic Processes: From Physics to Finance (Springer, Berlin,
1999) R.N. Mantegna und H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000) | |
Bemerkungen: | Die Vorlesung behandelt die Anwendung von Modellierungsansätzen und Konzepten der statistischen
Physik im Bereich von Finanzmärkten. Diese an sich nicht-physikalischen Systeme werden als komplexe Systeme mit (zu untersuchender) stochastischer Dynamik aufgefasst, wobei bestimmte Phänomene eine Beschreibung durch physikalische Begriffe wie Skaleninvarianz oder Reichweite von Korrelationen erlauben und so ein alternativer Denkrahmen fuer ökonomische Vorgänge entsteht. |
6817 | Neutrino-Physik / Neutrino Physics (D/E) Mi 10 - 12, SR, ISKP |
Instructor(s): | H.K. Dreiner | |
For terms no.: | 6+ | |
Hours per week: | 2 | |
Prerequisites: | Particle Physics I | |
Contents: | * Discovery of the Neutrino (1930-1956) * Neutrino Deep Inelastic Scattering * Experimental Bounds on the Neutrino Mass * Dirac und Majorana Neutrinos * Neutrino Oscillations * Solar Neutrinos * Atmospheric Neutrinos * Neutrinoless Double Beta Decay * Models for Neutrino Mass * Supernova Neutrinos | |
Literature: | R. Mohaptra + P. Pal: Massive Neutrinos in Physics and Astrophysics F. Bohm + P. Vogel: Physics of Massive Neutrinos G. Raffelt: Stars as Laboratories for Fundamental Physics | |
Comments: | This lecture is intended for both experimental and theoretically inclined students. |
6806 | Seminar über Apparate, Messmethoden und Zeitreihenanalysen für die Bildgebung in der
medizinischen Diagnostik / Seminar on Tomography, Sensors and Time Series Analyses in Medical Diagnostics (D/E) (s. auch
6837) Mo 14 - 16, SR, ISKP, und 1 st nach Vereinbarung |
Instructor(s): | P. David | |
For terms no.: | 5-8 | |
Hours per week: | 3 | |
Prerequisites: | - Vor-Diplom - Ultrasound - Magnetic Spin Resonance | |
Contents: | - Physical Imaging Methods and Medical Imaging - Magnetic Resonance Computer Tomography - Transmission Computer Tomography (Röntgen-CT, Synchroton Radiation) - Emission Computer Tomography (PET, SPECT) - Ultrasound Imaging and Diagnostic Ultrasound - Biological Apects - Digital Image Processing - Biological Signals: Bioelectricity, Biomagnetism - Recording (EEG, MEG, ECG, MCG) - SQUIDS - Dynamical Dissipative Systems; Time Series Analyses - Basics of Deterministic and Stochastic Dynamical Systems - Application (Sudden Cardiac Death, Epilepsy, Traffic, Economy, Weather, Solid State Physics) - Critical States - Fractals, Noise - Detectors (Anger-Camera, Proportional-, Drift-Chamber, Semiconductor Pixel Detectors) | |
Literature: | 1. H. Morneburg (Hrsg.), Bildgebende Systeme für die medizinischen Diagnostik, Siemens, 3. Aufl. 2. E. Krestel (Hrsg.), Bildgebende Systeme für die medizinische Diagnostik, Siemens, 2. Aufl. 3. H.J. Maurer / E. Zieler (Hrsg.), Physik der bildgebenden Verfahren in der Medizin, Springer 4. P. Bösiger, Kernspin-Tomographie für die medizinische Diagnostik, Teubner 5. Ed. S. Webb, The Physics of Medical Imaging, Adam Hilger, Bristol 6. More literature will be offered | |
Comments: | Location: Seminarraum ISKP Time: Monday, 14 - 16, Beginning: Monday, 24.04.2001 Preliminary Discussion: Tuesday, 17.04.2001, 14:00 c. t. |
6807 | Seminar über Archäometrie: naturwissenschaftliche Methoden in der Archäologie Do 14 - 16, SR des Instituts für Vor- und Frühgeschichtliche Archäologie |
Dozent(en): | H. Mommsen | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Keine | |
Inhalt: | Naturwissenschaftliche Grundlagen, Durchführung und archäologische Ziele und Ergebnisse neuerer
Untersuchungsmethoden in der Archäometrie - archäometrische Prospektion (Suche und Kartierung archäologischer Fundstätten) - zerstörungsfreie Materialanalysen (Röntgenfluoreszenz, Neutronenaktivierung, Isotopenanalyse u.a.) und ihre Ziele: Identifikation der Materialien, Stand der Technologie, verfeinerte Klassifizierung, Herkunftsbestimmung, Echtheitsprüfung. - Datierung (radioaktive, biologische, magnetische u.a. Uhren: Radiokohlenstoff, Lumineszenz, Dendrochronologie u.a.) | |
Literatur: | M. J. Aitken: Science-based Dating in Archaeology, Longman, London 1990 S. Bowman: Science and the Past, British Museum Press, London 1991 H. Mommsen: Archäometrie, Teubner-Studienbücher, Stuttgart 1986 A. M. Pollard & C. Heron: Archaeological Chemistry, RSC-Paperbacks, 1996 J. Fassbinder & W. Irlinger: Archaeological Prospection, Bayerisches Landesamt für Denkmalpflege, München 1999 G.A. Wagner: Altersbestimmungen von jungen Gesteinen und Artefakten, Stuttgart 1995 Zeitschriften:- Archaeometry, Oxford seit 1958, in der Präsenzbibliothek des Rheinischen Landesmuseums, Bonn - Journal of Archaeological Science, seit 1974, ebda | |
Bemerkungen: | Die Übung wird im Seminarraum des Instituts für Vor- und Frühgeschichte (Hauptgebäude) abgehalten. Bei der Vorbereitung der Seminarvorträge ist eine interdisziplinäre Zusammenarbeit der Studenten der Geistes- und Naturwissenschaften vorgesehen. |
6808 | Computer-Theoretikum und -Seminar / Computational Physics Seminar (D/E) Di 14 - 16, HS, ISKP, und 4 st nach Vereinbarung |
Dozent(en): | B. Metsch | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2(+4) | |
Voraussetzungen: | Theoretische Mechanik, Elektrodynamik, Quantenmechanik I; Eine Programmiersprache (C(++)), Pascal, FORTRAN). | |
Inhalt: | Die für dieses Seminar ausgewählten Themen zeigen, wie ein Rechner bei der Untersuchung physikalischer Systeme eingesetzt werden kann. Einerseits dient dies zur Ergänzung und Vertiefung des in den Hauptvorlesungen angebotenen Stoffes, andererseits sollen die dabei erforderlichen numerischen Methoden vorgestellt werden. Für die Bearbeitung der Themen stehen den Teilnehmern im CIP-Pool der physikalischen Institute Arbeitsplatzrechner zur Verfügung. Themen: Nichtlineare Schwingungen; Eingeschränktes Dreikörperproblem; 1-dimensionale Streuprobleme in der Quantenmechanik; Lösung der Poisson-Gleichung in der Elektrostatik / 2-dimensionale Hydrodynamik; Quantenmechanische Streuung an kugelsymmetrischen Potentialen; Diatomische Moleküle; Pfadintegral Monte-Carlo-Methoden auf dem Gitter; Hartree-Fock Methode für Atome und Metallcluster; Ising Modell; Selbstorganisation in chemischen Reaktionen. | |
Literatur: | (1) S.E. Koonin, D.C. Meredith, Physik auf dem Computer, Band 1+2, Oldenburg Verlag, 1990. (2) E.W. Schmid, G. Spitz, W. Lösch, Theoretische Physik mit dem Personal Computer, Springer Verlag, 1987. (3) P.L. DeVries, Computerphysik: Grundlagen, Methoden, Übungen, Spektrum Akademischer Verlag, 1995. (4) W.H. Press, S.A. Teukolsky, W.t. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992. (Auch in FORTRAN). (5) J. Schnakenberg, Algorithmen in der Quantentheorie und Statistischen Physik, Zimmermann-Neufang, 1995. (6) W. Kinzel, G. Reents, Physik per Computer, Spektrum Akademischer Verlag, 1996. (7) F.J. Vesely, Computational Physics, An Introduction, Plenum Press, 1994. | |
Bemerkungen: |
6809 | Seminar über ausgewählte Themen der Umwelt-Physik / Seminar on Selected Topics in
Environmental Physics (D/E) Do 16 - 18, HS 118, AVZ I |
Dozent(en): | B. Diekmann | |
Fachsemester: | ab Vordiplom | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Eine Teilnahme an der Vorlesung des WS 2000/2001 ist keine zwingende Vorraussetzung an derjenigen dieser Lehrveranstaltung wiewohl die dort zusammengefassten themenrelevanten physikalischen Kenntnisse des Grundstudiums, z.B. in Elektromagnetik oder Thermodynamik, hier nicht erneut dargestellt werden können. | |
Inhalt: | Preliminary schedule 26.4. Einführung und Einteilung/Introduction 3.5. Brennstoffzellen als Stromerzeuger der Zukunft, Seminar 10.5. Umweltphysikalische Aktivitäten bei der DLR, Seminar 17.5. Umweltphysikalische Aktivitäten bei der DLR, Exkursion 31.5. Über den Umgang mit Radioaktivität: Schadwirkungen und deren Ermittlung in Schadensfallanalysen 21.6. Über den Umgang mit Radioaktivität Energetische, medizinische und verfahrenstechnische Nutzanwendungen, Seminar 28.6. Elektrosmog- Phantom oder Realität, Seminar 5.7. Klimamodelle- aktueller Stand, Vortrag 12.7. Physik,Chemie und Biologie der Abwasserbehandlung 20.7. Physik,Chemie und Biologie der Abwasserbehandlung Exkursion Großkläranlage (vorgesehen) Das Einschieben weiterer Termine, z.B. an den Freitagen 25.5. und 13.6. ist möglich. | |
Literatur: | -K.Heinloth, Die Energiefrage, Vieweg 1998 -B.Diekmann, Physikalische Grundlagen der Energieerzeugung, Teubner 1998 -Boeker Grendelle, Umweltphysik,Vieweg 1996 -a folder with copied transparencies from a lecture in winter term is available from B.Diekmann,0228733497 -literature for special seminar items will be handed by the supervisor | |
Bemerkungen: | A successful participation and presentation of one of the proposed topics will be certified. This certification may be used as the one necessary as 'Wahlpflichtschein' for the diploma examination. |
6810 | Die Nutzen der Supersymmetrie / The uses of Super Symmetry (D/E) Mi 10 - 12, HS 118, AVZ I |
Dozent(en): | R. Flume | |
Fachsemester: | 7./8. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Quantenmechanik I, II Anfangsgründe der Quantenfeldtheorie | |
Inhalt: | - Formalismus der Supersymmetrie - phänomenologische Motivation für Supersymmetrie - das minimal erweiterte Standardmodell - Seiberg-Witten Theorie - String-inspirierte effektive Theorien bei niedrigen Energien | |
Literatur: | Wess & Bagger, Supersymmetry, Weinberg, Quantum Field Theory III, Originalliteratur | |
Bemerkungen: |
6811 | Seminar über Schwerionenphysik / Seminar on Heavy Ion Physics (D/E) Fr 10 - 12, SR, ISKP |
Instructor(s): | K.-H. Speidel | |
For terms no.: | 6 | |
Hours per week: | 2 | |
Prerequisites: | Grundlagen der Atom- und Kernphysik/Fundamentals of Atomic- and Nuclear Physics | |
Contents: | - Ionen Beschleunigung bis zu relativistischen Energien/Ion acceleration up to relativistic
energies. - Speicherung von Ionenstrahlen/Storage of ion beams. - Ionenstrahlkühlung/Ion beam cooling. - Ionendetektoren/Ion detectors. - Fragmentation in Ionenstößen/Fragmentation in ion collisions. - Superschwere Kerne (Elemente)/Superheavy nuclei (elements). - Kern Beta-Zerfall von nackt gestrippten Ionen/Nuclear beta decay of fully stripped ions. - Präzisions-Massenbestimmung in Speicherringen/Precision mass measurements in storage rings. - Hochkomprimierte Kernmaterie/Highly compressed nuclear matter/ Quark-Gluon-Plasma. | |
Literature: | Lehrbücher der Atom- und Kernphysik/Textbooks of atomic and nuclear physics. Spezielle Artikel werden zur Verfügung gestellt/special articles will be supplied. | |
Comments: | Dieses Wahlpflichtseminar widmet sich gegenwärtig aktuellen Themen der Atom- und Kernphysik, die
unter der Bezeichnung "Schwerionenphysik" einen eigenen Wissenschaftszweig darstellen. This elective seminar is dedicated to currently relevant topics of atomic and nuclear physics which represent under the name of 'Heavy Ion Physics' a special area of science. |
6812 | Bildgebung in Naturwissenschaft, Medizin und Technik / Imaging Methods in Science, Medicine, and
Technology (D/E) Fr 8 - 10, HS 118, AVZ I und 2 st nach Vereinbarung |
Dozent(en): | P. David, K. Maier, D. Meschede | |
Fachsemester: | ab 6. Fachsemester | |
Wochenstundenzahl: | 2+2 | |
Voraussetzungen: | ||
Inhalt: | siehe Webpage http://www.uni-bonn.de/iap/lehre/ss01_imaging | |
Literatur: | siehe Webpage | |
Bemerkungen: | siehe Webpage |
6813 | Seminar über Durchgang von Teilchen durch Materie und Detektoren / Seminar on Interaction of
Particles with Matter; Detector Principles (s. auch 6787) Fr 14 - 16, SR, ISKP |
Dozent(en): | P.-D. Eversheim, R. Jahn, W. Schwille | |
Fachsemester: | 6-8 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Atomphysik, Kern- oder Teilchenphysik | |
Inhalt: | Das Seminar begleitet die Vorlesung "Durchgang von Teilchen durch Materie und Detektoren" und soll die Diskussion über ausgewählte Themen anregen. Die einzelnen Seminarvorträge werden von den Studenten anhand von Originalliteratur und unter intensiver Betreuung durch die Dozenten gehalten. | |
Literatur: | K. Kleinknecht, Detektoren für Teilchenstrahlung (Teubner Studienbücher 1984) W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer 1994) Lehrbücher der Kern- und Teilchenphysik | |
Bemerkungen: |
6814 | Seminar: Wie symmetrisch ist die Natur? - Symmetrien und Symmetriebrechung in der Teilchenphysik /
Seminar: How symmetric is nature? - Symmetry and Symmetry Breaking in Particle Physics (D/E) Di 14 - 16, R. 300, PI |
Instructor(s): | M. Kobel, A. Quadt | |
For terms no.: | 6 | |
Hours per week: | 2 | |
Prerequisites: | Quantum Mechanics Particle physics I (at least in parallel) | |
Contents: | Symmetries are the basic principle of today's understanding of particle physics and the evolution of the
universe. The seminar covers fundamental symmetries in particle physics, both discrete and continuous. The theoretical concept and the experimental evidence for or against the conservation of various symmetries will be discussed by the students. Among possible topics are: --- The violation of Parity (P) --- The violation of Matter-Antimatter (CP) Symmetry --- Tests of the CPT theorem --- Local Gauge Symmetries --- Evidence for the Electroweak Gauge symmetry --- Evidence for the Strong Gauge Symmetry --- Effective Symmetries --- Spontaneous symmetry breaking and the Higgs mechanism --- Symmetries and Symmetry breaking in the early universe --- Supersymmetry | |
Literature: | will be announced on the web site, and in the seminar | |
Comments: | The language of the seminar will depend on the participants' wishes. |
6815 | Seminar über Superdeformation und magnetische Rotation in Kernen / Seminar on Superdeformation and
Magnetic Rotation in Nuclei (D/E) Fr 10 - 12, Bespr.R., ISKP, und 2 st nach Vereinbarung |
Instructor(s): | H. Hübel | |
For terms no.: | 7 | |
Hours per week: | 2+2 | |
Prerequisites: | Vorlesung: Kernphysik Lecture: Nuclear Physics | |
Contents: | Neue Forschungsergebnisse auf dem Gebiet der Kernstruktur, insbesondere zur Superdeformation und Magnetischen Rotation New results of research in the field of Nuclear Structure, in particular Superdeformation and Magnetic Rotation | |
Literature: | Wird im Seminar verteilt Will be distributed in the seminar | |
Comments: | Das Seminar gibt auch Einblick in Forschungsarbeiten der Kern- struktur-Gruppe The seminar allows to get aquainted with the research work of the nuclear structure group |
6816 | Seminar über Photonik / Seminar on Photonics (D/E) Do 14 - 16, Konferenzraum, IAP |
Instructor(s): | K. Buse, E. Soergel | |
For terms no.: | ab 5. Fachsemester | |
Hours per week: | 2 | |
Prerequisites: | no special requirements | |
Contents: | The seminar will cover actual subjects from the field of photonics. Talks will be prepared by the attendants and will be discussed afterwards. Possible subjects are, to name a few examples, novel light sources, photosensitive materials, holography, optical wavefront sensors, optical data storage, scanning near-field microscopy, single molecule light sources etc. Talks can be presented either in English or in German language. In the first week of the semester there will be an organizational meeting to discuss all issues and to allocate the subjects of the talks. This meeting will take place Thursday, April 19, 2 p.m., conference room, IAP. | |
Literature: | ||
Comments: | If there are questions: Please send an e-mail to kbuse@uni-bonn.de |
6963 | Seminar über theoretische Astrophysik Mo 11.00 - 12.30, HS 0.01, MPIfR |
Dozent(en): | J. Schmid-Burgk, K. Menten | |
Fachsemester: | ab 7. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Vordiplom Physik, ansonsten Rücksprache mit den Dozenten. Wünschenswert Grundvorlesung Astronomie. | |
Inhalt: | Es werden neuere Publikationen aus den Gebieten Sternentstehung, Sternentwicklung und Kosmologie besprochen. Auf Wunsch können praktische Übungen absolviert werden. | |
Literatur: | Wird in der ersten Sitzung (23. 4.) angegeben. | |
Bemerkungen: | Weitere Informationen und eventuell vorzeitige Themenvergabe unter Tel. 0228-525428 (Bernd Weferling). |
6822 | Seminar zur Fachdidaktik der Physik Di 10 - 12, HS, IAP, und 2 st nach Vereinbarung Beginn: 24.4. Vorbesprechung: nach der ersten Vorlesung 6780 |
Dozent(en): | R. Meyer-Fennekohl u.M. | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2 + 2 | |
Voraussetzungen: | ||
Inhalt: | Wie gestaltet man Unterricht in Sekundarstufe I so, daß in der Oberstufe häufiger Physik
gewählt wird? Natürlich gibt es keine einfachen Rezepte. Die Teilnehmenden sollen Einzelstunden mit geeigneten Experimenten planen und vorführen. Anleitungen dazu gibt es in den zwei zusätzlichen Stunden. | |
Literatur: | H. Muckenfuß: "Lernen im sinnstiftenden Kontext" (Cornelsen-Verlag) Schulbücher | |
Bemerkungen: | Teilnahmebescheinigung für Zusatzprüfung Sekundarstufe I |
6823 | Übungen zur Festkörperphysik in Sekundarstufe I 2 st nach Vereinbarung Vorbesprechung: nach der ersten Vorlesung 6780 |
Dozent(en): | R. Meyer-Fennekohl | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | ||
Inhalt: | Hier wird nicht der Stoff der Vorlesung geübt, sondern der des Physikunterrichts in Sekundarstufe I,
soweit er etwas mit Festkörperphysik zu tun hat. Anknüpfungspunkte zur Vorlesung können dabei aber gern
genutzt werden. Keine Klausur, gelegentlich Hausaufgaben aus Schulbüchern. | |
Literatur: | Schulbücher, auch alte aus der eigenen Schulzeit | |
Bemerkungen: |
6824 | Demonstrationspraktikum für Lehramtsstudierende in Gruppen, Mo 15 - 18, HS, IAP |
Dozent(en): | R. Meyer-Fennekohl u.M. | |
Fachsemester: | ab 7. | |
Wochenstundenzahl: | 3 | |
Voraussetzungen: | Fortgeschrittenenpraktikum | |
Inhalt: | Demonstrationsexperimente sollen nicht physikalische Phänomene erforschen oder Größen genau messen, sondern anschaulich erklären. Dementsprechend werden Experimentalvorträge ausgearbeitet und gehalten (in Gruppen). Dabei sollen Freihandversuche und aufwändigere Experimente geübt werden, die in Schulbüchern für Sekundarstufe II beschrieben sind (schon seit langem, oder vielleicht erst demnächst). | |
Literatur: | wird zur Verfügung gestellt | |
Bemerkungen: | qualifizierter Studiennachweis, Pflicht für Lehramt |
6825 | Schulpraktikum für Physikunterricht 4 st nach Vereinbarung, EMA-Gymnasium |
Dozent(en): | H. Busse, R. Meyer-Fennekohl | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 4 | |
Voraussetzungen: | möglichst Seminar zur Fachdidaktik | |
Inhalt: | Eine Doppelstunde pro Woche Unterricht, und zwar mit Schülerversuchen. Wie das abläuft, kann nicht theoretisch vermittelt werden, ist aber für erfolgreiches Unterrichten unentbehrlich. Vorbereitung und Nachbesprechung gemeinsam nachmittags. Je nach Bedarf Blockpraktikum in der vorlesungsfreien Zeit. | |
Literatur: | ||
Bemerkungen: | Pflicht für Lehramt |
6826 | Seminar für Lehramtsstudierende: Kernphysik Do 14 - 16, HS, IAP, und 2 st nach Vereinbarung |
Dozent(en): | P. Herzog, R. Meyer-Fennekohl u.M. | |
Fachsemester: | ab 6. | |
Wochenstundenzahl: | 2+2 | |
Voraussetzungen: | Grundkenntnisse der Kernphysik | |
Inhalt: | Grundlegende Experimente der Kernphysik. Einzelne Experimente sollen gut verständlich sowohl in der Intention als auch im detaillierten experimentellen Aufbau dargestellt werden.Die Resultate sollen kritisch mit den aus ihnen zu ziehenden Konsequenzen diskutiert werden. | |
Literatur: | Zur allgemeinen Vorbereitung: E. Bodenstedt, Experimente der Kernphysik und ihre Deutung, Teil 1-3, Bibliographisches Institut Mannheim/Wien/Zürich (1978,1979) Zu den einzelnen Vortragsthemen wird von den Veranstaltern weitere Literatur angegeben. | |
Bemerkungen: | Bei diesem Seminar soll besonders auf eine didaktisch gute Darstellung und ein tiefgehendes Verständnis der Grundlagen Wert gelegt werden. |
6827 | Atomphysik für Nebenfächler Mi 8 - 10, SR, ISKP |
Dozent(en): | J. Ernst | |
Fachsemester: | ab 5.Sem. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Physik I und II für Nebenfächler Erwünscht: Grundkenntnisse: Rechnen mit komplexen Zahlen, Einfache Differentialgleichungen | |
Inhalt: | 1) Geschichte der Atomphysik 2) Atomismus (Größe, Ladung, Masse und Struktur der Atome) 3) Teilcheneigenschaften des Lichts (Plancksches Strahlungsgesetz, Photoeffekt, Comptoneffekt) 4) Bohrsches Atommodell (Postulate, Frank-Hertz-Versuch, Erfolg und Scheitern des Modells) 5) Welleneigenschaften von Teilchen (Versuche zu Beugung und Interferenz von Elektronen- und Neutronenstrahlen) 6) Eindimensionale Schrödingergleichung für ungebundene und gebundene Teilchen (Transmission und Reflexion an Potenzialschwellen, Tunneleffekt, diskrete Lösungen für Kasten- und Parabelpotenzial) 7) Schrödingergleichung für gebundene Ein-Elektronsysteme (Wellenfunktionen und Quantenzahlen) 8) Entdeckung des Elektronenspins (Richtungsquantelung, Feinstruktur, magnetische Momente von Atomelektronen) 9) Mehrelektronensysteme (Pauliprinzip, Periodensystem der Elemente) 10) Elektromagnetische Übergänge in Atomen (Auswahlregeln, charakteristische Röntgenstrahlung, Laserprinzip) 11) Diskussion sog. Paradoxa der Quantenphysik | |
Literatur: | Alonso-Finn: Physik III, Intereuropean Edition Bethge/Gruber, Physik der Atome u. Moleküle, VCH Verlag Weinheim 1990 Hering/Martin/Stohrer, Physik für Ingenieure, VDI-V. Düsseldorf 1988 T. Mayer-Kuckuk, Atomphysik, Teubner Stuttgart 1994 H.J. Paus, Physik in Experimenten und Beispielen, Hanser München 1995 Otter/Honecker, Atome-Moleküle-Kerne, Bd.1 Atomphysik, Teubner 1993 Dobrowski/Krakau/Vogel, Physik für Ingenieure, Teubner 1996 P.A. Tipler/R.A. Llewellyn, Modern Physics, W.H. Freeman & Comp. 1999 S.T. Thornton/A. Rex, Modern Physics for Scientists and Engineers, Hartcourt - Brace College Publishers 1999 R.A. Serway/R.J. Beichner, Physics for Scientists and Engineers - with Modern Physics, Hartcourt - Sounders College Publishers, 2000 G. Greenstein/A.G. Zajonc, The Quantum Challenge, Jones and Bartlett Publishers, 1997 | |
Bemerkungen: | Vorbesprechung und Beginn: Mittwoch 18.4.2000, 8 c.t. SR ISKP |
6828 | Datenerfassung und Verarbeitung in physikalischem Experiment / Data Acquisition and Analysis in Physics
(D/E) Di 16 - 18, HS, ISKP |
Instructor(s): | E. Klempt | |
For terms no.: | 6-8 | |
Hours per week: | 2 | |
Prerequisites: | Basic Knowledge in electronics and programm encoding | |
Contents: | The course will cover the readout of instrumentation used in experiments on nuclear and particle physics. Modern hardware realisations (CISC, RISC) and bus systems (VME, fastbus) will be discussed as well as real-time operating systems. The complex multivariate data require special statistical tools which will be introduced. | |
Literature: | Kleinknecht, Detektoren (Teubner) B. Renk, Datenerfassung (Teubner) S. Brandt, Datenanalyse (B.I.) R. J. Barlow, Statistics (Wiley) | |
Comments: | It will be suggested to compress the course into one week July 23-27; 4 h lectures, 4 h exercises daily |
6829 | Übungen / Exercises zu 6828 2 st nach Vereinbarung |
Instructor(s): | E. Klempt, H. Kalinowsky | |
For terms no.: | 6-8 | |
Hours per week: | 2 | |
Prerequisites: | Basic knowledge in electronics and programm encoding | |
Contents: | Data signal will be generated and looked at in a VME based ADC system. The data will be read to disk using
optical fiber links. Standard routines will be used for data reduction and analysis. Topics: Simulations, Kinematical constraints, confidence level and pulls, distributions, partial wave analysis. | |
Literature: | Kleinknecht, Detektoren (Teubner) B. Renk, Datenerfassung (Teubner) S. Brandt, Datenanalyse (B.I.) R. J. Barlow, Statistics (Wiley) | |
Comments: | It will be suggested to compress the course into one week July 23 - 27, 4 h lectures, 4 h exercises daily. |
6830 | Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton-Streuereignissen, pr / Laboratory in the
Research Group: Analysis of Electron-Proton-Scattering Events (D/E) ganztägig, 14 Tage lang, Sept. 2001, PI |
Instructor(s): | I. Brock, J. Crittenden, E. Hilger, U. Katz u.M. | |
For terms no.: | 6-8 | |
Hours per week: | full time, 2 weeks long, September 2001 | |
Prerequisites: | Contents of the course Particle Physics (Teilchenphysik) | |
Contents: | Introduction to the current research activities of the group, introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group. | |
Literature: | Working materials will be provided. | |
Comments: | The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques. |
6831 | Praktikum in der Arbeitsgruppe: Analyse von Daten aus Elektron-Positron-Kollisionen /
Halbleiter-Sensoren und ASIC-Elektronik, pr / Laboratory in the Research Group: Analysis of Data from
Electron-Positron-Collisions / Semiconductor Sensors and ASIC Electronics (D/E) ganztägig, Aug. 2001, PI |
Dozent(en): | P. Fischer, M. Kobel, N. Wermes | |
Fachsemester: | 8 | |
Wochenstundenzahl: | ganztägig, 3 Wochen, August 2001 | |
Voraussetzungen: | Grundkenntnisse in Teilchenphysik ODER in Elektronik und Detektoren | |
Inhalt: | Bearbeitung einer konkreten Aufgabenstellung in der Arbeitsgruppe. Themen werden durch Aushang oder bei Nachfrage bekannt gegeben. | |
Literatur: | ||
Bemerkungen: | In dem Praktikum soll ein Überblick über die Forschungsthemen der Arbeitsgruppe gegeben werden. Nach einer Einarbeitungsphase soll eine konkrete Aufgabenstellung entweder in der Datenanalyse oder in der Detektorhardware durchgeführt werden. Das Praktikum vermittelt einen Eindruck, wie eine typische Diplomarbeit in dieser Thematik aussehen könnte. |
6832 | Praktikum in der Arbeitsgruppe: materialwissenschaftliche Untersuchungen mit der Synchrotronstrahlung,
pr / Laboratory in the Research Group: Material Science and Synchrotron Radiation (D/E) ganztägig, 4 Wochen lang, nach Vereinbarung, PI |
Instructor(s): | H. Modrow, NN u.M. | |
For terms no.: | >5 | |
Hours per week: | full effort for approximately 4 weeks | |
Prerequisites: | Quantum Mechanics I, FP I, Atomic Physics, Basics of Condensed Matter Physics | |
Contents: | The unique properties of Synchrotron Radiation have enabled experiments based on Synchrotron light to
provide key information for a huge number of research topics not only from Physics, but also from Biology, Chemistry,
Medicine, Material science and Engineering. After a broad introduction to the variety of experimental techniques using Synchrotron Radiation and some of the scientific questions using these techniques the participants will be assigned individual projects which are closlely linked to current research topics according to their individual interests. | |
Literature: | Dependent on the individual project. Will be provided upon registration. | |
Comments: | * Up to two participants per term can get the chance to go to Baton Rouge, USA on an extended course. * Registration starts immediately. Contact H. Modrow, PI K44, 73-3203 e-mail: modrow@physik.uni-bonn.de |
6833 | Interdisziplinäre Computersimulationen (Monte-Carlo für Börse, Gesellschaft, Altern) /
Interdisciplinary Computer Simulations (Monte Carlo for Stock Markets, Society and Ageing) (D/E) Mo 13 - 15, HS 116, AVZ I |
Dozent(en): | D. Stauffer | |
Fachsemester: | ab 5 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Fortran Programmieren (bei Bedarf Einführung dazu) Statistische Physik aus dem Zyklus Theoretische Physik ist hilfreich, aber nicht nötig | |
Inhalt: | Ich bringe Beispiele moderner Monte Carlo-Simulationen von Physikern zu traditioneller Physik (Ising Modell, Perkolation, ...) wie auch zu interdisziplinären Anwendungen (biologisches Altern, Börsenkurse, gesellschaftliche Phänomene. Die Auswahl aus diesen Bereichen kann auch von den Studierenden zum Semesterbeginn mitbestimmt werden. | |
Literatur: | Literatur: Stauffer-Kapitel zur Statistischen Physik in : D. Stauffer, F.W. Hehl, et al, Computer-Simulation and Computer-Algebra, Springer, Heidelberg und Berlin 1987, 1988, 1993. S. Moss, P.M.C. de Oliveira und D. Stauffer, Evolution, Money, War and Computers, Teubner Verlag, Leipzig und Stuttgart 1999. DM 48.- ? Noch zu schreibender Review von D. Stauffer zu Sociophysics. | |
Bemerkungen: | Übungen und Vorlesung werden je nach Bedarf gemischt, da gleicher Dozent. Sicherheitshinweis: Der Dozent ist in Bonn nicht prüfungsberechtigt. |
6834 | Übungen zu 6833 Mo 15 - 17, HS 116, AVZ I |
Dozent(en): | D. Stauffer | |
Fachsemester: | ab 5 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Wie Vorlesung | |
Inhalt: | Einfache Programmierbeispiele zur Vorlesung werden mit Bleistift und Paper von den Studierenden unter Anleitung gelöst | |
Literatur: | Wie Vorlesung | |
Bemerkungen: | Wie Vorlesung |
6835 | Praktikum in der Arbeitsgruppe: IR-Laserspektroskopie und ihre Anwendungen, pr / Laboratory in the
Research Group: IR Laser Spectroscopy and its Applications (D/E) ganztägig, 4 - 6 Wochen lang, nach Vereinbarung, IAP |
Dozent(en): | F. Kühnemann u.M. | |
Fachsemester: | 6,8 | |
Wochenstundenzahl: | 30 | |
Voraussetzungen: | Vordiplom; darüber hinaus je nach Aufgabenstellung: Quantenmechanik, Laser, Programmierung | |
Inhalt: | Mit Hilfe spektroskopischer Methoden lassen sich Spurengase noch in sehr kleinen Mengen (1:10^10) in der Luft nachweisen. Wir nutzen dies für die Messung von Molekülen, die von Pflanzen abgegeben werden und, wie bei einem "Atemgastest", einen Einblick in den Zustand der Pflanze erlauben. Dazu bauen wir neue Spektrometer, entwickeln die Analytik für den Nachweis und führen zuammen mit Partnern biologische Experimente durch. Ein interessantes Arbeitsfeld für alle diejenigen, die Interesse an moderner Lasertechnik, an einer angewandten(!) Physik und interdisziplinärer Zusammenarbeit haben. | |
Literatur: | ||
Bemerkungen: |
6836 | Praktikum in der Arbeitsgruppe: optische Laserspektroskopie, pr / Laboratory in the Research Group:
Optical Laser Spectroscopy (D/E) ganztägig, 4 Wochen lang, nach Vereinbarung in der vorlesungsfreien Zeit, IAP |
Instructor(s): | R. Wynands | |
For terms no.: | >5 | |
Hours per week: | during semester breaks | |
Prerequisites: | Quantum Mechanics Laser physics or similar would be helpful but not required | |
Contents: | Would you like to know what it is really like to be working in a research lab? Come and join us for a few
weeks during the semester break. There will be a small project that you can work on. Please see the web page for more details. ================================== Wollen Sie wissen, wie es wirklich ist, in einem Forschungslabor zu arbeiten? Dann machen Sie in den Semesterferien für in paar Wochen bei uns mit! Wir geben Ihnen ein kleines Projekt zum bearbeiten. Siehe auch die Webseite für mehr Details. | |
Literature: | Will be provided for each specific project. Wird für jedes Projekt individuell zusammengestellt. | |
Comments: |
6837 | Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin, pr (s. auch 6806) Do 14 - 16 nach Ankündigung, Kliniken Venusberg, und 1 st nach Vereinbarung |
Dozent(en): | P. David, H. Plath, K. Reichmann, H. Schüller | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | 2+1 | |
Voraussetzungen: | Teilnahme am Seminar Physik bildgebender Systeme in der Medizin | |
Inhalt: | Vertiefung der Seminarthemen - Magnetische Kernresonanz Bildgebung (MRI) - Transmissions-Computer-Tomographie (CT) - Emissions-CT (SPECT, PET) - Ultrasonographie - Angiographie durch praktische Beispiele | |
Literatur: | 1. H. Morneburg (Hrsg.), Bildgebende Systeme in der medizinischen Diagnostik, Siemens, 3. Aufl. 2. E. Krestel (Hrsg.), Bildgebende Systeme in der medizinischen Diagnostik, Siemens, 2. Aufl. 3. H.J. Maurer, E .Ziegler (Hrsg.), Physik der bildgebenden Verfahren in der Medizin, Springer 4. P. Bösinger, Kernspin-Tomographie für die medizinische Diagnostik, Teubner 5. Ed. S. Webb, The Physics of Medical Imaging, Adam Hilger, Bristol 6. Weitere Literatur wird zur Verfügung gestellt. | |
Bemerkungen: | In den Kliniken, nach Ankündigung im Seminar und durch besonderen Aushang |
6888 | Einführung in Strings und Branen / Introduction to strings and branes (D/E) Mo 11 - 13, SR, ISKP |
Dozent(en): | S. Förste | |
Fachsemester: | 7. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Quantenmechanik/quantum mechanics nützlich/useful: -Quantenfeldtheorie/quantum field theory -Allgemeine Relativitätstheorie/General Relativity | |
Inhalt: | -fundamentaler String, Quantisierung, effektive Feldtheorie,
T-dualität -Orbifoldebenen -D-Branen -Orientifolds -SUGRA Beschreibung von Branen -AdS/CFT Korrespondenz -Brane Welten ----------------------------------------------------------- -fun | |
Literatur: | M.B. Green, J.H. Schwarz, E. Witten, "Superstring theory" Volume 1(and 2), Cambridge University Press,
1987. D. Luest, S. Theisen, "Lectures on String Theory", Springer 1989. J. Polchinski, "String Theory", Volume 1 and 2, Cambridge University Press, 1998. J. Polchinski, TASI lectures on D-branes, hep-th/9611050 H. Ooguri, Z. Yin, TASI lectures on perturbative string theories, hep-th/9612254 | |
Bemerkungen: |
6935 | Stars and stellar evolution Fr 10 - 13, HS Astronomie |
Instructor(s): | K.S. de Boer, W. Seggewiß | |
For terms no.: | 6 or 8 | |
Hours per week: | 3 | |
Prerequisites: | This class builds on adequate knowledge of elementary astronomy (Vordiplom mit Astronomie) | |
Contents: | Radiation transport and physics of stellar atmospheres; continuous and absorption line spectra; stellar structure and physics of stellar interiors; starformation; pre-main sequence stars; stellar evolution and post main-sequence stadia; binaries, degenerate stars and supernovae; stellar mass function. | |
Literature: | Carroll B.W., Ostlie D.A., Modern Astrophysics; ISBN 0-201-54730-9 Böhm-Vitense E., Vol 1, 2, 3 on stellar astrophysics; ISBN Kippenhahn R., Weigert A., Stellar structure and evolution; ISBN There is a write-up in german, and on special topics a write-up in english | |
Comments: | Class will be given in english |
6941 | Cosmic ray physics Do 10 - 12, HS Astronomie Beginn: 26.4. |
Instructor(s): | P. Biermann | |
For terms no.: | ||
Hours per week: | 2 | |
Prerequisites: | ||
Contents: | 1. Why study cosmic rays: Accelerators in the sky 2. Data, energies, spectra, chemical abundances, isotopic abundances: Energies up to 300 EeV, fluxes down to 1 /km^2/century 3. Basic particle acceleration, Fermi theory: Relativistic tennis game 4. Supernova explosions as cosmic ray sources: 10^{51} to 3 10^{53} erg 5. Transport of Cosmic Rays, spallation, leakage from Galaxy, neutrons: Scanning the Galaxy with neutrons 6. The highest energies, data and experiments: Airshower arrays, on the ground and in space 7. Source proposals, new physics: Big bang relics, supersymmetry and radio galaxies 8. One source, many sources? 9. Magnetic fields, Galaxy halo wind, nearby universe: Where do magnetic fields come from? 10. Synopsis | |
Literature: | Cosmic Rays, Barbara Wiebel-Sooth, Peter L. Biermann, chapter for Landolt-Börnstein, vol. VI/3c, Springer Publ. Comp., 1999, p. 37 - 90 | |
Comments: | Anfang 26.4., 10h00 |
6942 | Wie schreibe ich einen Antrag, Abstract, Artikel? Blockvorlesung, pr., ges. Ankündigung |
Instructor(s): | K.S. de Boer | |
For terms no.: | 7 and up | |
Hours per week: | 1 | |
Prerequisites: | ||
Contents: | In 5-7 Sitzungen soll an Hand von Beispielen gezeigt werden, welche Aspekte beim Schreiben zu beachten
sind. Kleine Aufgaben sollen dabei behilflich sein. Die Vorlesung ist insbesondere für Diplomanden und Doktoranden
der Astronomie gedacht, da die Beispiele aus diesem Fachbereich kommen. The course on "How to write an Abstract, an Article, or proposal'' will take place as a block. In 5-7 sessions the various aspects of relevance for the writing of such texts will be discussed using actual examples. The class is tailored to advanced students of astronomy. | |
Literature: | Material will be provided | |
Comments: | Siehe gesonderte Ankündigung (Aushang) See special announcement (bulletin boards) |
6943 | Veränderliche und pekuliare Sterne im Rahmen der allgemeinen Sternentwicklung Blockvorlesung, ges. Ankündigung |
Dozent(en): | H. Dürbeck | |
Fachsemester: | Hauptstudium, 5-8 Sem. | |
Wochenstundenzahl: | 2 (Blockvorlesung) | |
Voraussetzungen: | Einführungsvorlesung Astronomie und Astrophysik | |
Inhalt: | 1. Phänomenologie der veränderlichen Sterne: pulsierende - eruptive - kataklysmische 2. Phänomenologie der pekuliaren Sterne: Of - WR - Be - Ap - Am - lambda Boo - Barium - CN, CH, R und S. 3. Physikalische und chemische Ursachen der Lichtveränderungen und Pekuliaritäten 4. Veränderliche und pekuliare Sterne im Rahmen der Sternentwicklung | |
Literatur: | C. Jaschek und M. Jaschek: The classification of stars, Cambridge University Press, 1987 | |
Bemerkungen: | Die Blockveranstaltung findet an zwei Samstagen, 7.7.2001 und 14.7.2001, von 9:15 - 13:00, statt. |
6945 | AGN und schwarze Löcher Do 16 - 18, HS Astronomie |
Dozent(en): | H. Falcke | |
Fachsemester: | ab 6. Semester | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Grundstudium Physik und Grundvorlesungen in Astronomie/Astrophysik | |
Inhalt: | In dieser Vorlesung stelle ich einige grundlegende astrophysikalische Prozesse vor, die zum
Verständnis der Physik aktiver galaktischer Kerne (engl.: AGN) und schwarzer Löcher wichtig sind. Das
Standardmodell für AGN besteht aus einem zentralen schwarzen Loch, das durch eine Akkretionsscheibe gefüttert
wird und in der Nähe des Ereignishorizonts einen relativistischen Plasmajet produziert. Scheibe und Jet sind verantwortlich für ein breites Emissionsspektrum von Radiowellenlängen bis hin zum Gamma-Bereich. Dabei scheint die Physik von super-schweren schwarzen Löchern in den Zentren von Galaxien und von stellaren schwarzen Löchern in unserer Milchstraße vergleichbar zu sein. Ein Verständnis von AGN und schwarzen Löchern ist eine wichtige Grundlage für eine große Schnittmenge von Gebieten aus Astronomie und Physik (z.B. Astroteilchenphysik, Gravitationsphysik, Kosmologie, Hochenergie- und Radioastronomie etc.). Themen, die in der Vorlesung behandelt werden, sind unter anderem: Beobachtung und Klassen von AGN, Synchrotron-Strahlung, Schock-Beschleunigung, relativistische Jets, Akkretionsscheiben, Röntgen-Doppelsterne, Schwarze Löcher, Galaktisches Zentrum, "Unified-Scheme of AGN", ggf. auch radioastronomische Messtechnik für AGN (VLBI) mit Besuch von Labor und Teleskop. | |
Literatur: | "An Introduction to Active Galactic Nuclei'', Bradley M. Peterson, Cambridge University Press, Cambridge (useful lecture notes) "Active Galactic Nuclei'', Ian Robson, John Wiley & Sons, Chichester (more basic introduction but wider scope) "Active Galactic Nuclei - From the Central Black Hole to the Galactic Environment'', Julian Krolik, Princeton Series in Astrophysics, Princeton, New Jersey (in-depth textbook for advanced students) | |
Bemerkungen: |
6946 | Ausgewählte Kapitel der Sonnenphysik Mi 16 - 18, MPIfR, HS 0.01 |
Dozent(en): | E. Fürst | |
Fachsemester: | 6 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Grundvorlesungen Physik | |
Inhalt: | 1. Überblick über den Aufbau der Sonne 2. Oberflächennahe Schichten 3. Ausbreitung von Radiowellen im Plasma 4. Die aktive Sonne: Sonnenflecken 5. Wechselwirkung Plasma-Magnetfeld und der Sonnenfleckenzyklus 6. Struktur und Änderungen der Magnetfelder 7. Protuberanzen 8. Strahlungsausbrüche in den verschiedenen Wellenbereichen 9. Flaresterne | |
Literatur: | The quiet sun, Gibson 1972 Solar magnetic fields, Stenflo 1994 Physik der Sternatmosphaeren, Unsoeld 1968 Flares and Flashes, Greiner et al. 1994 Solar Radioastronomy, Kundu 1965 Introduction to solar Radioastronomy, Krueger 1985 Weitere Literatur wird mit der Vorlesung bekanntgegeben | |
Bemerkungen: | Beginn: Mittwoch, 18. April 2001 16 Uhr |
6947 | Molekülwolken und Sternentstehung Di 9 - 10, HS Astronomie |
Dozent(en): | A. Heithausen | |
Fachsemester: | Hauptstudium | |
Wochenstundenzahl: | 1 | |
Voraussetzungen: | Radioastronomie | |
Inhalt: | Molekülspektren Anregung von Moleküllinien Bestimmung von Molekülhäufigkeiten Interstellare Chemie Staub in Molekülwolken Phasen der Sternentstehung Interstellare Maser | |
Literatur: | Rohlfs & Wilson - Tools of radioastronomy (Springer Verlag) Verschuur & Kellermann - Galactic and Extragalactic Radioastronomy (Springer Verlag) | |
Bemerkungen: |
6948 | Die extragalaktische Entfernungsskala Do 9 - 11, MPIfR, HS 0.01 |
Dozent(en): | W. Huchtmeier | |
Fachsemester: | 3 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Einführung in die Astronomie | |
Inhalt: | I Entfernungsbestimmung auf der Erde II Entfernungen im Sonnensystem Von trigonometrischen Verfahren zu Radarmethoden III Entwicklung sekundärer Methoden der Entfernungsbestimmung in unserer Galaxis jenseits der Reichweite trigonometrischer Methoden IV Methoden zur Entfernungsbestimmung naher Galaxien V Extragalaktische Entfernungen und kosmologische Ueberlegungen | |
Literatur: | M. Rowan-Robinson: 'The cosmological distance ladder', W.H. Freeman and Co. 1985 und neuere Literatur | |
Bemerkungen: |
6949 | Röntgenastronomie: Ein neues Fenster ins Universum Di 10 - 12, R. 1.12 |
Dozent(en): | J. Kerp | |
Fachsemester: | 2 | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Grundkenntnisse der Atomphysik, Einführungsvorlesung Astronomie | |
Inhalt: | Die Röntgenastronomie steht am Beginn einer neuen Ära. Durch den erfolgreichen Start der ESA Mission XMM-Newton und der NASA Mission Chandra eröffnet sich der Astronomie ein neues Fenster ins Universum. Es ist erstmals möglich, Röntgenaufnahmen eins-zu-eins mit optischen Aufnahmen und radiointerferometrischen Beobachtungen zu vergleichen. Im Gegensatz zu optischen CCD-Aufnahmen enthält jedes Element des Röntgen-CCDs noch Information über das Spektrum der Quellen. Damit ist es möglich, den Emissionsprozess in der Röntgenquelle direkt zu studieren. Die Beobachtungen sind nicht mehr alleine - wie bei früheren Missionen - auf die ganz hellen Quellen am Himmel beschränkt, sondern aufgrund der großen lichtsammelnden Fläche des XMM-Newton Röntgenteleskopes sind sogar alle 8500 bekannte Röntgenquellen (Basis ROSAT Himmelsdurchmusterung) mit einem hochauflösenden Gitterspektrographen spektral höchst aufgelöst beobachtbar (E/dE = 300). Damit werden von den Planeten, über die Sterne, den Galaxien und Galaxienhaufen die Objekte des ganz jungen Universums erstmals im Detail studierbar. | |
Literatur: | Skript zur Vorlesung "Exploring the X-ray Universe" von Charles und Seward, Cambridge University Press | |
Bemerkungen: |
6952 | Leben im Universum Do 15 - 17, MPIfR, HS 0.01 |
Dozent(en): | J. Schmid-Burgk, E. Krügel, K. Menten | |
Fachsemester: | ab 4. | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Grundkenntnisse Physik und Chemie. Besondere Kenntnisse in Astrophysik werden nicht vorausgesetzt. | |
Inhalt: | Physikalische und chemische Voraussetzungen für die Entwicklung biologischer Systeme im Universum. Chemische Entwicklung des Weltalls, Bildung von Planetensystemen, physikalische Anforderungen an das Zentralgestirn, "habitable life zones". Potentielle Lebensträger im Sonnensystem. Vergleich der geologischen Entwicklung von Erde, Mars, Venus und Jupitermonden. Beobachtungsmöglichkeiten. | |
Literatur: | Wird jeweils in der Vorlesung angegeben. | |
Bemerkungen: |
6953 | Ausgewählte Kapitel über das Planetensystem Mo 10 - 12, HS Astronomie |
Dozent(en): | E. Willerding | |
Fachsemester: | ab dem 1. Semester | |
Wochenstundenzahl: | 2 | |
Voraussetzungen: | Keine besonderen Vorkenntnisse erforderlich | |
Inhalt: | 1. Allgemeine Struktur des Sonnensystems 2. Die Satellitensysteme der Riesenplaneten 3. Die Bedeutung von Impaktprozessen im Sonnensystem 4. Historische Analyse der Enstehungsmodelle des Sonnensystems. Das monistische Paradigma (Kant, Laplace, Weizsäcker, Safronow, Wetherill, ...; das dualistische Paradigma (Buffon, Chamberlin/Moulton, Jeans, Jeffreys, Hartmann/Davis, Cameron/Truran, ...) | |
Literatur: | 1. S.G.Brush, A History of Modern Planetary Physics I-III, Cambridge University Press, New York, 1997 2. H.J.Fahr, E. Willerding, Die Entstehung von Sonnensystemen. Spektrum Akademischer Verlag, Heidelberg, Berlin, 1998 3. The New Solar System, edited by Beatty/Petersen/Chaikin. Fourth edition, Cambridge University Press, 1999 | |
Bemerkungen: | Je nach Interesse der Zuhörer kann ein bestimmtes Thema ausführlicher behandelt werden. |