.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Sommersemester 2009

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

6791  Laser Spectroscopy
Tu 8-10, Th 10-12, HS, IAP
davon: 1 st Übungen in Gruppen
  Instructor(s): F. Vewinger
  For term nos.: 5 and higher
  Hours per week: 3+1
  Prerequisites: Atomic Physics, Optics
  Contents: Spectroscopy phenomena - time and frequency domain;
high resolution spectroscopy;
pulsed spectroscopy; frequency combs;
coherent spectroscopy; nonlinear spectroscopy: Saturation, Raman spectroscopy, Ramsey spectroscopy.
Single molecule spectroscopy; spectroscopy at interfaces & surfaces
Advanced optical imaging;
spectroscopy of cold atoms;
atomic clocks; atom interferometry
  Literature: W. Demtröder; Laser spectroscopy (Springer 2002)
S. Svanberg; Atomic and molecular spectroscopy basic aspects and practical applications (Springer 2001)
A. Corney; Atomic and laser spectroscopy (Clarendon Press 1988)
N. B. Colthup, L. H. Daly, S. E. Wiberley; Introduction to infrared and Raman spectroscopy (Academic Press 1990)
P. Hannaford; Femtosecond laser spectroscopy (Springer New York 2005)
C. Rulliere; Femtosecond laser pulses: principles and experiments (Springer Berlin 1998)
  Comments: The lecture will be given in english unless everybody understands german
6792  High Energy Collider Physics
Tu 12-14, Th 8-10, HS, IAP
davon: 1 st Übungen in Gruppen
  Instructor(s): J. Kroseberg
  For term nos.: 7 or higher
  Hours per week: 3+1
  Prerequisites: Introductory Particle Physics & Quantum Mechanics
  Contents: This is the second of two independent advanced courses on experimental particle physics, deepening and
widening the topics covered in the basic (Nuclear and) Particle Physics lecture. The emphasis is put on
physics and experimental methods relevant to current hadron collider experiments. Topics include:
electroweak precision measurements, proton structure, QCD studies at hadron colliders, Higgs boson
searches, top quark physics, and searches for physics beyond the standard model.
  Literature: Recommended textbooks include:

  • Ellis, Stirling, Webber: QCD and Collider Physics (Cambridge 2003)

  • Green: High Pt Physics at Hadron Colliders (Cambridge 2005)

  • Cottingham, Greenwood: An Introduction to the Standard Model of Particle
    Physics (Cambridge 2007)

  • Griffith: Introduction to Elementary Particle Physics (Wiley 2008)

The lecture does not follow a particular book, though, and will use examples from recent or current
research whenever possible. Additional suggestions for further reading will be given during the course.
  Comments: Tutorials will be held Thu 8-10 every other week (alternating with two-hour lectures).
6793 Physics of Hadrons
Mo 11, Tu 8-10, SR I, HISKP
Übungen: 1 st n. Vereinb.
  Instructor(s): R. Beck, K.-T. Brinkmann
  For term nos.: 7 and higher
  Hours per week: 3+1
  Prerequisites: Completed B.Sc. in Physics, with experience in electrodynamics, quantum mechanics, atomic and nuclear physics
  Contents: Structure of baryons and mesons;
hadronic, electromagnetic and weak probes;
size, form factors and structure functions;
quarks, asymptotic freedom, confinement, resonances;
symmetries and symmetry breaking, hadron masses;
quark models, meson and baryon spectrum; baryon spectroscopy and exclusive reactions;
missing resonances, exotic states
  Literature: Recommended literature:
B. Povh, K. Rith C. Scholz, F. Zetsche; Teilchen und Kerne (Springer, Heidelberg 6. Aufl. 2004)
Perkins; Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000)
K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986)
6795 Quantum Field Theory
We 10-12, Fr 12, HS, HISKP
Übungen: 2 st in Gruppen
  Instructor(s): H. Dreiner
  For term nos.: 6
  Hours per week: 3+2
  Prerequisites: Quantum Mechanics I and Quantum Mechanics II
  Contents: Introduction to quantum field theory. Scalar fields and spin-1/2 fermions. Quantize fields. Extend to spin-1 fields, consider full Quantum Electrodynamics. Introduction to renormalization. Non-Abelian groupds are treated next term.
  Literature: The course will mainly follow the book by Mark Srednicki: `Quantum Field Theory'
I have ordered 15 copies for the student's library, which can be borrowed.

Othe good books on field theory include:

* Peskin & Schroeder (many copies in library)
* Itzykson and Zuber
* Ramond
* Weinberg Vol I
6796  Theoretical Particle Astrophysics
Mo 12-14, We 12, HS I, PI
Übungen: 2 st in Gruppen
  Instructor(s): S. Förste, H.-P. Nilles
  For term nos.: 7
  Hours per week: 3 + 2
  Prerequisites: Quantum mechanics, basic knowledge of particle physics phenomena and relativity
  Contents: Standard Big Bang cosmology
Dark matter
Phase transitions in the early universe
structure formation
  Literature: E. Kolb and M. Turner, The Early Universe, Addison-Wesley 1990

T. Padmanabhan, Structure Formation in the Universe, Cambridge University Press 1993
  Comments: first lecture 20 April 2009
6797 Group Theory
We 16-19, SR I, HISKP
Übungen: 2 st in Gruppen
  Instructor(s): E. Epelbaum, S. Krewald
  For term nos.: 1st Term (Master in Physics)
  Hours per week: 3 + 2
  Prerequisites: quantum mechanics, some knowledge of linear algebra

  1. Finite groups

  2. Group representations and character theory

  3. Permutation group and Young tableaus

  4. Lie groups

  5. SU(2), SU(3) and the Poincaré group


  • H. Georgi, "Lie algebras in particle physics"

  • H. F.Jones, "Groups, representations and physics"

  • M. Hamermesh, "Group theory and its application to physical problems"

  • Fl. Stancu, "Group theory in subnuclear physics"

  • B. G. Wybourne, "Classical groups for physicists"

6798  Advanced Accelerator Physics
We 10-12, HS, IAP, Th 10-12, SR I, HISKP
Vorlesung am 16.04.2009 im HS, HISKP
Übungen: 1 st in Gruppen
  Dozent(en): W. Hillert, R. Maier
  Fachsemester: 5-8
  Wochenstundenzahl: 3+1
  Erforderliche Vorkenntnisse: Mechanics, Electrodynamics, basic knowledge in Physics of Particle Accelerators (e.g. first lecture on Accelerators Physics)
  Inhalt: Diese Veranstaltung ist eine Fortführung und Vertiefung der Vorlesung "Physik der Teilchenbeschleuniger". Hier sollen, neben der Behandlung der Synchrotronstrahlung und ihrem Einfluss auf die Strahleigenschaften in Elektronenbeschleunigern, vornehmlich kollektive Phänomene wie optische Resonanzen und Instabilitäten diskutiert werden. Darüber hinaus ist eine Vertiefung des Lehrstoffes in praktischen Übungen am Beschleuniger ELSA geplant.

This course is a continuation of the lecture "Accelerator Physics". In addition to the treatment of synchrotron radiation and its influence on the beam characteristics in electron accelerators, mainly collective phenomena like optical resonances and instabilities will be discussed. Furthermore, deepening the subject matter by practical exercises at the ELSA accelerator facility is planned.
  Literatur: H. Wiedemann, Particle Accelerator Physics, Springer 1993, Berlin, ISBN 3-540-56550-7

D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN 0-471-55163-5

F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, Springer 1996, Berlin, ISBN 3-540-61238-6

K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4

S. Y. Lee, Accelerator Physics (Second Edition), World Scientific, Singapore 2004, ISBN 981-256-200-1 (pbk)

Script of the lecture "Accelerator Physics":
  Bemerkungen: Es besteht die Möglichkeit, den Lernstoff durch detaillierte Besichtigungen
und praktische Studien an der Beschleunigeranlage ELSA des Physikalischen
Instituts zu veranschaulichen und zu vertiefen.

Exkursionen zu anderen Beschleunigern sind vorgesehen.

Zu dieser Vorlesung wird ein Script im Internet (pdf-Format) zur Verfügung gestellt.

The opportunity will be offered to exemplify and deepen the subject matter by
detailed visits and practical studies at the institute of physics' accelerator
facility ELSA of the institute of physics.

Excursions to other accelerators are intended.

Accompanying the lecture, a script (pdf-format, english) is provided in on the internet.
6799  Physics in Medicine II: Fundamentals of Medical Imaging
Mo 9-11, We 12, SR I, HISKP
Übungen: 1 st in Gruppen
  Instructor(s): K. Lehnertz
  For term nos.: 5-8
  Hours per week: 3+1
  Prerequisites: Vordiplom/Bachelor
  Contents: Introduction to physical imaging methods and medical imaging
(1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission
computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI
(1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect
(1b) applications: analysis of structure and function
(2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging
(2a) Basics of neuroelectromagnetic activity, source models
(2b) instrumentation, detectors, SQUIDs
(2c) signal analysis, source imaging, inverse problems, applications
  Literature: 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl.
2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
5. W. Buckel: Supraleitung, VCH Weinheim, 1993
6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998
More literature will be offered
  Comments: Beginning: We, Apr 15; 12:00 ct
Location: SR I, HISKP
6801  Advanced Theoretical Particle Physics
Tu 14-16, Th 12, HS I, PI
Übungen: 2 st in Gruppen
  Instructor(s): M. Drees
  For term nos.: 8 and up
  Hours per week: 3 + 2
  Prerequisites: Theoretical Particle Physics 1 (physics 615)
Quantum Field Theory 1 and 2 (physics 607, physics 755)
  Contents: Particle Physics beyond the Standard Model; in particular:
Neutrino masses and neutrino oscillations
Grand unified theories
Introduction to N=1 Supersymmetry
  Literature: G.G. Ross, "Grand Unified Theories"
Drees, Godbole, Roy: "Theory and Phenomenology of Sparticles"
  Comments: The main emphasis will be on Supersymmetry -- which is also the focus of most research in theoretical particle physics at Bonn.
6802  Advanced Theoretical Hadron Physics
Tu 10-12, We 9, SR II, HISKP
Übungen: 2 st in Gruppen
  Instructor(s): U. Meißner, A. Rusetsky
  For term nos.: 7+
  Hours per week: 3+2
  Prerequisites: QM 1+2, QFT 1, Hadron Physics 1 (preferred)

  1. Analiticity and unitarity of the S-matrix: Dispersion relations

  2. Introduction to QCD

  3. Chiral symmetry; Introduction to Chiral Perturbation Theory

  4. Basic concepts of lattice gauge theory

  5. Modern theory of nuclear forces


  1. Peskin & Schroeder: An introduction to Quantum Field Theory

  2. Bjorken & Drell: Relativistic Quantum Fields

  3. Donoghue & Golowich & Holstein: Dynamics of the Standard Model

  4. J. Smit: Introduction to Quantum Fields on a Lattice

  5. Bernard & Kaiser & Meißner: Chiral Dynamcis in Nucleons and Nuclei, Int. J. Mod. Phys. E4 (1995) 193

  6. Epelbaum: Few-Nucleon Forces and Systems in Chiral Effective Field Theory, Prog. Part. Nucl. Phys. 57 (2006) 654 [nucl-th/0509032]

  7. Epelbaum, Hammer & Meißner: Modern Theory of Nuclear Forces, arXiv:0811.1338 [nucl-th]

  Comments: Lecture will be held in German or English at the discretion of the audience.
6803  Advanced Theoretical Condensed Matter Physics
Tu 12, Fr 8-10, HS I, PI
Übungen: 2 st in Gruppen
  Dozent(en): J. Kroha
  Fachsemester: ab 6. Fachsemester
  Wochenstundenzahl: 3 + 2 (exercises)
  Erforderliche Vorkenntnisse: Quantenmechanik I + II (zweite Quantisierung)
Theoretische Physik IV: Statistische Physik (Physik 520)
Theoretical Condensed Matter Physics (Physics 617) vorteilhaft

  • Grundlagen der Quantenfeldtheorie bei endlicher Temperatur

  • Grundlagen der Quantenfeldtheorie f"ur Systeme fern des
    thermodynamischen Gleichgewichts

  • Quasiteilchen und kollektive Anregungen in Festk"orpern

  • Supraleitung
    BCS-Theorie, kollektive Anregungen in Supraleitern, Josephson-Effekte

  • Quantenmagnetismus:
    Magnetische St"orstellen in Metallen, Kondo-Effekt, Renormierungsgruppe,
    magnetische Gittersysteme

  • Ungeordnete Quantensysteme:
    Modelle f"ur Elektronen in einem Zufallspotential, Unordnungsinduzierter
    Metall-Isolator-"Ubergang ("Schwache" Lokalisierung, Anderson-Lokalisierung),

  • Foundations of quantum field theory at finite temperature

  • Foundations of quantum field theory for non-equilibrium system

  • Quasiparticles and collective excitations in solids

  • Superconductivity
    BCS theory, collective excitations in superconductors, Josephson effects

  • Quantum magnetism:
    Magnetic impurities in metals, Kondo effect, the renormalization group,
    magnetic lattice systems

  • Disordered quantum systems:
    Models for electrons in a random potential, disorder-induced metal-insulator
    transition ("weak" localization, Anderson localization), scaling theory

  Literatur: W. Nolting: Grundkurs Theoretische Physik VII: Vielteilchenphysik
A. Altland, B. Simons: Condensed Matter Field Theory
M. Tinkham: Introduction to Superconductivity
J. R. Schrieffer Theory of Superconductivity
P. Fazekas: Lecture Notes on Electron Correlation and Magnetism
A. Hewson: The Kondo Effect to Heavy Fermions
  Bemerkungen: Auf Wunsch der Teilnehmer kann die Vorlesung auf Englisch gehalten werden.

Anhand wesentlicher physikalischer Ph"anomene der Physik von
Vielteilchensystemen werden wichtige, moderne Methoden zu deren theoretischer
Beschreibung eingef"uhrt und behandelt, so dass ein ausgewogenes Mass an
Ph"anomenologie und theoretischem Formalismus gew"ahrleistet wird.
Dabei werden aus dem umfassenden Themenbereich in Abstimmung mit den
Teilnehmern einige Themen ausgew"ahlt, die in besonderer Tiefe behandelt

Die Vorlesung kann in Verbindung mit der Vorlesung "Theoretical Condensed
Matter Physics" (WS 08/09, Prof Monien) oder einer Vertiefungsvorlesung
"uber Theorie der Kondensierten Materie als Diplom-Wahlpflichtfach gew"ahlt

The lecture may be given in English or German at the participants' discretion.

The lectrure will give a balances presentation of essential phenomena of
many-body physics and of important, modern methods for their theoretical
description. From the broad field of many-body physics several topics to be
treated in more depth will be selected at the participants' discretion.

6928 Einführung in die Supersymmetrie / Introduction to Supersymmetry (D/E)
Blockvorlesung, 26.-29.05.
  Dozent(en): E. Kraus
  Fachsemester: 6
  Wochenstundenzahl: Blockvorlesung
  Erforderliche Vorkenntnisse: Relativistische Quantenmechanik,
Grundkenntnisse in Quantenfeldtheorie

  • Supersymmetrie-Algebra

  • Wess-Zumino-Modell

  • Supersymmetrische Erweiterung der QED

  • Wess-Zumino-Eichung

  • Weiche Brechungen der Supersymmetrie


  1. J. Wess and J. Bagger, "Supersymmetry and Supergravity", (Princeton University Press, 1982);

  2. H.P. Nilles, Phys. Rep. 110 (1984) 1;

  3. S.P. Martin, "A supersymmetry primer", hep-ph/9709356;

  4. M. Sohnius, "Introducing Supersymmetry", Phys. Rep. 128 (1985) 39.

  Bemerkungen: Blockvorlesung mit 5 bis 6 Vorlesung vom 26.5.2009 bis 29.5.2009
6806  Statistical Methods of Data Analysis
Mo 8-10, HS, IAP
Übungen: 1 st in Gruppen
  Instructor(s): M.A. Pleier
  For term nos.: >5
  Hours per week: 2+1
  Prerequisites: Vordiplom
  Contents: Chapter 1: Introduction & Basic Concepts
Chapter 2: Probability Distributions
Chapter 3: Errors
Chapter 4: Parameter Estimation
Chapter 5: Confidence Levels and Intervals
Chapter 6: Test of Hypotheses
Chapter 7: Monte Carlo Methods
Chapter 8: Unfolding
Chapter 9: Advanced Analysis Methods
  Literature: R. J. Barlow: Statistics
V. Blobel / E. Lohrmann: Statistische und numerische Methoden der Datenanalyse
G. Cowan: Statistical Data Analysis
F. James: Statistical Methods in Experimental Physics
  Comments: Language is either English or German at the discretion of the class.
Exercises: 2 hours every two weeks.
Website: http://pi.physik.uni-bonn.de/~pleier/teaching/statistics-ss09/

This is also physics716.
6808  C++ Programming in High Energy Physics
We 8-10, HS, IAP
Übungen: 1 st in Gruppen
  Instructor(s): E. von Törne
  For term nos.: ab 6.
  Hours per week: 2+1 Übung
  Prerequisites: Basic knowledge of programming and C constructs. Interest in C++ programming.
  Contents: Basic ingredients of C++
Object orientation: classes, inheritance, polymorphism
How to solve physics problems with C++
Standard Template Library
C++ in Data analysis, example: the ROOT library
C++ and large scale calculations
How to write and maintain complex programs
Parallel computing and the Grid
Debugging and profiling
  Literature: Recommended Literature:
Eckel: Thinking in C++, Prentice Hall 2000.
Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.
Deitel and Deitel, C++ how to program, Prentice Hall 2007.
Stroustrup, The C++ Programming Language, Addison-Wesley 2000.
  Comments: Language German or Engölish at the discretion of the class.

Examples are taken from a High energy Physics context. High energy Physics knowledge is not required. This lecture is also of interest to graduate students how would like to learn C++ or extend their knowledge. However, this is not a programming course. The knowledge of simple C constructs is a requirement.

Exercises will be hands-on.
6809  Particle Detectors and Instrumentation
Mo 14-16, We 14, Konferenzraum II, Zi. 166, PI
Übungen: 1 st in Gruppen
  Instructor(s): R. Beck, H. Schmieden
  For term nos.: >5
  Hours per week: 3+1
  Contents: LECTURE: Introduction, Pion- and Photoinduced Reactions, Passage of Radiation
through Matter, Particle Detectors, Electronics and Data Aquisition,
Electron and Photon Beams, Kinematics and Cross Sections, Data Analysis.

LABORATORY COURSE: Computation of Kinematics, Preparation of Detectors,
Preparation of Electronics and Data Aquisition, Preparation of a Tagging
System, Setup of an Experiment at ELSA, Data Taking, Data Analysis.
  Literature: Leo, Techniques for Nuclear and Particle Physics Experiments, Springer (1994).
Kleinknecht, Detektoren für Teilchenstrahlung, Teubner (1992).
Povh, Rith, Scholz, Zetsche, Nuclei and Particles, Springer (1994).
Perkins, Introduction to High Energy Physics, Addision-Wesley (1986)
  Comments: preliminary discussion (Vorbesprechung) and first lecture
Wednesday, April 15.
6811 Quantum Optics
Tu 10-12, Th 14-16, HS, IAP
Übungen: 1 st in Gruppen
  Dozent(en): M. Weitz
  Fachsemester: ab 5
  Wochenstundenzahl: 3+1 (Vorlesung+Übung)
  Erforderliche Vorkenntnisse: Quantenmechanik I, Optik und Atomphysik-Grundvorlesung
  Inhalt: Atom-Licht Wechselwirkung, Bloch-Vektor
Kohärenz von Licht
Quantisierung des Lichtfeldes
Zwei- und Dreiniveauatome
Laserkühlung von Atomen, Quantengase
  Literatur: R. Loudon; The quantum theory of light (Oxford University Press 2000)
G. J. Milburn, D. F. Walls; Quantum Optics (Springer 1994)
D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition. 2005)
M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
P. Meystre, M. Sargent; Elements of Quantum Optics (Springer 1999)
6812  Environmental Physics & Energy Physics:
Selected Topics from 'Physics & Energy': Transport & Storage of Energy
Th 13:30-15, HS 118, AVZ I
  Dozent(en): B. Diekmann, T. Reichelt
  Fachsemester: 5 (or more)
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Vordiplom or corresp. knowledge
SANG course for diploma students, MsC course Nr. 771
  Inhalt: Mean focus is "transport" and "storage" of energy with special emphasis
on heat, electricity and chemical & mechanical energy.
Hereout consequences for " efficient use of energy" shall be discussed in detail in various seminar talks elaborated by students

Students may choose a corresponding proposal at the Intro-Lecture on
Thursday , 19.4.09, 13.30 AVZ 118, or make themselve a proposal to be discussed
with the lecturers.

Introductory lessions are given in english or german on request of the participants, seminar talks should be given preferentielly in english.
  Literatur: B.Diekmann, Physikalischew Grundlagen der Energieerzeugung, Vieweg 1997
Rebhan,E. Energiehandbuch, VDI Verlag 2002
Bobin,Huffer Nifenecker, L'Energie De Demain, EDP science,2003
Heinloth, die Energiefrage Vieweg 1999
  Bemerkungen: A certification is handed to those students who fulfill the criteria
- (nearly) regular presence and
- a talk held in sufficient quality.
It may serve as a SANG testate for those preparing for the Diploma
examination !

6813  Ultracold Atoms and Optical Lattices (A Playground for Quantum Manyparticle Systems)
  Dozent(en): D. Meschede, F. Vewinger, A. Widera
  Fachsemester: ab 07
  Wochenstundenzahl: 2+1
  Erforderliche Vorkenntnisse: Basic Bachelor Courses in Experimental and Theoretical Physics
  Inhalt: Ensembles of ultracold atoms offer an ideal model system to experimentally study many particle systems with systematically controlled interactions, a regime that is challenging for today's theoretical tools. The emergence of ultracold atom physics is thus stimulating the interest in topics with relevance for quantum optics, atomic physics, condensed matter physics and even more fields where quantum many particle systems play an important role.
In this lecture the team will present a systematic overview on experimental methods, basic theoretical concepts and perspectives in this rapidly moving field of contemporary physics.
6815  Seminar on Current Topics in Experimental Particle Physics
Do 17:00-18:30, Zi. 300, PI
  Instructor(s): K. Desch, J. Kroseberg, E. von Törne, N. Wermes
  For term nos.: ab 7.
  Hours per week: 2
  Prerequisites: Elementarteilchenphysik / Particle Physics
  Contents: Topics for the complex

Physics and Detectors at Hadron Colliders
Detection Techniques and Detectors
Higgs Physics
Physics of the Top-Quark
Supersymmetry Searches
Extra Dimension Phänomena
  Literature: will be distributed
  Comments: Seminar will be in English or German or mixed, depending on attendance
6816  Seminar Medical Physics: Physical Fundamentals of Medical Imaging
Mo 14-16, SR I, HISKP
  Instructor(s): K. Lehnertz, P. David, K. Maier
  For term nos.: 5-8
  Hours per week: 2+1
  Prerequisites: Vordiplom
  Contents: Physical Imaging Methods and Medical Imaging of Brain Functions

Emission Computer Tomography (PET)
- basics
- tracer imaging
- functional imaging with PET

Magnetic Resonance Imaging (MRI)
- basics
- functional MRI
- diffusion tensor imaging
- tracer imaging

Biological Signals: Bioelectricity, Biomagnetism
- basics
- recordings (EEG/MEG)
- source models
- inverse problems
  Literature: 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik,
Siemens, 3. Aufl.
3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin,
4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
5. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
6. W. Buckel: Supraleitung, VCH Weinheim, 1993
  Comments: Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo Apr. 20
6817  Seminar on Recent Topics in Applied Optics and Condensed Matter Physics
Di 14-16, HS, IAP
  Dozent(en): K. Buse, M. Fiebig, D. Haertle, D. Meschede, F. Vewinger, A. Widera
  Fachsemester: 5. und höher
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Grundkurse Physik im 1.-4. Semester
  Inhalt: Das Seminar hat zwei Ziele: Die tiefere Einarbeitung in Themen, die dicht an aktueller Forschung auf dem Gebiet der Angewandten Optik liegen und außerdem die praktische Übung der Erstellung und Präsentation exzellenter Vorträge. Bei einer Vorbesprechung stellen die Betreuer Themen vor, aus denen sich die aktiven Teilnehmer des Seminars je eins auswählen.

Hinweis: Early Birds können sich schon jetzt Themen aus der unten stehenden Liste aussuchen.

Dazu stellen die Betreuer dann Literatur sowie Tipps und Hilfsmittel zur Literaturbeschaffung zur Verfügung. Nach einer Einarbeitung in das Gebiet werden dann Aufbau und Struktur des Vortrags mit dem Betreuer diskutiert. Es folgt eine Besprechung der erstellten Präsentationsfolien. Dann wird der Vortrag in dem Seminar präsentiert. Neben den aktiven Teilnehmern können dazu gern weitere Studierende kommen. Die Vortragsdauer soll 45-60 Minuten betragen. Im Anschluss an den Vortrag findet eine fachliche Diskussion statt. Es folgt ein zweiter Teil der Diskussion, bei dem nur die aktiven Teilnehmer des Seminars anwesend sind. Dabei wird der Vortrag im Hinblick auf technische Aspekte der Präsentation analysiert. Nach dem Vortrag wird dann noch eine Kurz-Zusammenfassung des behandelten Themas erstellt und im Internet veröffentlicht. Vorträge können auf Deutsch oder auf Englisch gehalten werden.

Die Vorbereitung des Vortrags ist arbeitsintensiv. Es wird dringend geraten, bereits am Anfang des Semesters unmittelbar nach der Wahl eines Themas mit der Einarbeitung in die Materie zu beginnen.

In diesem Semester stehen voraussichtlich unter anderem folgende Themen zur Auswahl:
- Verschiedene Themen zum Gebiet „Quantum Control“ (D. Meschede)
- Metamaterialien: Künstliche Kristalle mit erstaunlichen optischen
Eigenschaften (M. Fiebig)
- Mehr sehen als man denkt: Nichtlineare Laseroptik an geordneten
Strukturen (M. Fiebig)
- "Optimale Kontrolle": Steuerung molekularer Dynamik mit geformten
Laserpulsen (F. Vewinger)
- Künstliche Atome: Optische Kontrolle einzelner Spins in Quantenpunkten (F. Vewinger)
- Quanteninterferenz: Kontrolle molekularer Dynamik mit Lichtpulsen (F. Vewinger)
- Kleine Strukturen, große Wirkung: Ferroelektrische Domänen (K. Buse/D. Haertle)
- Sprung in die Nanowelt: Ferroelektrische Nanokristalle (K. Buse/D. Haertle)
- Durchstimmbares Laserlicht: optische parametrische Oszillatoren (K. Buse/D. Haertle)
- Quantenprozessoren: Quantengatter mit gefangenen Ionen (A.Widera)
- Anstoß zur Verschränkung: Kalte Kollisionen für skalierbare Verschränkung mit neutralen Atomen (A. Widera)
- Kostbarer Speicher: Farbzentren in Diamant als Quantenbits (A. Widera)

Die Themen von F. Vewinger finden Sie näher beschrieben unter http://www.iap.uni-bonn.de/vewinger/Lectures/Topics_Seminar.html

Die Vorbesprechung mit der Ausgabe der Themen findet am Dienstag, dem 14. April um 14:15 Uhr im Hörsaal des IAP statt. Interessierte Studierende können sich aber auch schon gern vorher bei Betreuern zur Vergabe eines Vortragsthemas melden.

The seminar has two goals: To provide in-depth knowledge about selected actual topics in the field of applied optics and to provide practical training in preparing and presenting excellent talks. During the first meeting the organizers will present a list of topics from which each active participant of the seminar can select one.

Hint: Early birds can already contact the organizers during the lecture free time and select one topic.

For each topic literature will be provided. Starting with this material the active participants of the seminar will familiarize themselves with the content. This will be done by discussions as well as by further literature search. Based on the accumulated knowledge an outline for each talk will be made and finally the viewgraphs will be prepared. Then the talk will be presented in the seminar. Typical duration of the talk is 45-60 minutes. After the talk there will be a discussion about the content. And, as a second part of the discussion, technical issues of the talk will be analyzed. Finally, a short written summary of the talk will be prepared and posted in the internet. Talks can be given in German or English.

Preparation of the talk is a serious amount of work. It is highly recommended to start already at the beginning of the lecture time to familiarize yourself with the content.

This term at least the following topics are available:

- Various topics related to “Quantum Control” (D. Meschede)
- Metamaterials: Artificial crystals with exciting optical properties (M. Fiebig)
- Seeing more than expected: Nonlinear laser optics on ordered structures
(M. Fiebig)
- Optimal control: Steering molecular dynamics with shaped laser pulses (F. Vewinger)
- Artificial atoms: All-optical control of single spins in quantum dots (F. Vewinger)
- Quantum interference: Control of molecular dynamics with light pulses (F. Vewinger)
- Small structures, large impact: Ferroelectric domains (K. Buse/D. Haertle)
- Going to the nano-scale: Ferroelectric nanocrystals (K. Buse/D. Haertle)
- Tuning of laser light: optical parametrical oscillators (K. Buse/D. Haertle)
- Quantum processors: Quantum gates with trapped ions (A.Widera)
- Kick-off for entanglement: Cold collisions for large scale entanglement of neutral atoms (A. Widera)
- Precious memory: Color centers in diamond as quantum bits (A. Widera)

The topics of F. Vewinger are detailed a bit more under http://www.iap.uni-bonn.de/vewinger/Lectures/Topics_Seminar.html

A first meeting will take place Tuesday, April 14 in the IAP lecture hall at 2:15 p.m. However, interested students can contact the organizers also in advance to get already a topic for an own talk.
  Literatur: wird individuell bei der Themenvergabe besprochen

will be provided on an individual basis
6818  Seminar on the Spectrum of Hadrons with Charm - Experimental and Theoretical Aspects
We 14-16, SR I, HISKP
  Instructor(s): K.-T. Brinkmann, A. Gillitzer, C. Hanhart, A. Nogga, A. Wirzba
  For term nos.: 6+
  Hours per week: 2
  Prerequisites: Quantum Mechanics
  Contents: The seminar will address key hadronic data of the programs on open and hidden heavy-quark spectroscopy at the present-day experimental facilities (e.g. Belle in Japan, BaBar at Stanford University, CLEO in Frascati) and the future ones (BES III in Beijing or PANDA of the FAIR project in Darmstadt). It will put these experimental issues - on mostly charm physics - into perspective by discussing the corresponding theoretical aspects in the framework of Quantum Chromodynamics (QCD), the fundamental theory of strong interaction physics. Especially, the investigation of charmonia and bottomonia (heavy quark-antiquark hadronic states as e.g. the J/psi and its excitations) and of hadrons with a heavy-light combination of (anti)quarks (e.g. D mesons) will deepen our understanding of the physics of strong interactions in the non-perturbative regime of QCD about excitation spectra, confinement, final state interactions etc. Another key issue is the search for bound systems other than quark-antiquark states in the meson sector: note that these so-called exotic states made either by gluons only (glueballs) or having a constituent gluon component (hybrids), a diquark-antidiquark structure (tetraquarks) or a di-meson configuration (hadron molecules) are allowed by QCD in principle, but still have not been uniquely identified in experiments limited to light-quark physics.
  Literature: J.F. Donoghue, E. Golowich, B.R. Holstein,
Dynamics of the Standard Model
Cambridge University Press 1992

Topic specific literature will be provided.
  Comments: This seminar is dedicated to both, to experimentally inclined students as well as to theoretically inclined students. The relative weight of theoretical and experimental aspects will be chosen according to the preferences of the seminar participants. There are no prerequisites other than quantum mechanics. The seminar will be held in German or English at the discretion of the audience. The first meeting, where the list of topics will be distributed, is on April 15, 2009. Early birds can already contact the organizers during the lecture free time and select one topic.
6821 Seminar on Theoretical Physics at Colliders
Do 16-18, Konferenzraum II, Zi. 166, PI
  Instructor(s): H. Dreiner
  For term nos.: 9+
  Hours per week: 2
  Prerequisites: Theoretical Particle Physics II
  Contents: We discuss recent developments in LHC collider physics.
  Literature: Barger & Phillips: Collider Physics
Aitchison: Supersymmetry
6822  Seminar on Mesoscopic Physics
Fr 11-13, Konf.R. I, Zi. W160, PI
  Dozent(en): J. Kroha, A. Lubatsch
  Fachsemester: Ab. 6. Fachsemester
  Wochenstundenzahl: 2 stündig
  Erforderliche Vorkenntnisse:  
  Inhalt: Siehe www-Link zur Veranstaltungsank"undigung.
See www link to the course annaouncement.
6840  Ringvorlesung der Forschergruppe 557:
Advanced Photonics and Quantum Optics
  Dozent(en): W. Alt, K. Buse, M. Fiebig, D. Haertle, J. Kroha, K. Maier, D. Meschede, K. Peithmann, M. Sokolowski, M. Weitz
  Fachsemester: ab 7.
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Profound knowledge about the fundamentals of optics and solid-state physics.
  Inhalt: The principal investigators of the DFG research unit 557 "Light Confinement and Control with Structured Dielectrics and Metals" will give insights into their actual research topics. The course is dedicated in particular to PhD students that are supervised by these principal investigators. The lectures are, however, open to all interested experienced students.

The course will be given in German, unless at least one participant prefers to hear the lectures in English.
6842 Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E)
pr, ganztägig, Dauer n. Vereinb., PI
  Dozent(en): H. Dutz, S. Goertz u.M.
  Fachsemester: 7 oder höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik
  Inhalt: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.
Thema: Forschung und Entwicklung rund ums Polarisierte Target

Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten.
  Literatur: wird gestellt
  Bemerkungen: Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten.

Depending on the students' preferences the course is given in German or in English.
6845 Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Dozent(en): F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M.
  Fachsemester: 7 oder höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Vorlesungen über Detektoren und Elektronik
  Inhalt: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Detectors and Micro-Electronics
  Literatur: will be handed out
  Bemerkungen: early aplication necessary

Prof. v. Törne, Prof. Wermes

further contacts: Dr. F. Hügging, Dr. H. Krüger
6846 Praktikum in der Arbeitsgruppe: Proton-Proton-Kollisionen am LHC / Research Internship: Proton-Proton-Collisions at LHC (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Dozent(en): M. Cristinziani, J. Kroseberg, M.A. Pleier, E. von Törne, N. Wermes u.M.
  Fachsemester: 7 oder höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Vorlesungen über Teilchenphysik
  Inhalt: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.

Thema: Analyse von Daten an Experimenten der Hochenergiephysik (ATLAS,D0)

Ablauf (abhängig von der Anzahl der Interessenten, siehe unten):

1. Woche: Vorträge von Mitgliedern der Arbeitsgruppe an die Studenten

2. Woche: Vorträge der Studenten über das zu bearbeitende Thema nach Einarbeitung

1.+ 2. Woche Einarbeitung

ab 2. Woche bis 4. Woche: Durchführung eines kleinen Projektes
  Literatur: wird gestellt
  Bemerkungen: Langfristige Anmeldung ist erforderlich, bei

Prof. Wermes, Prof. von Törne

Der oben skizzierte Ablauf ist erst ab 5 Studenten moeglich. Bei Einzelteilnehmern

erfolgt eine Einbindung in die Arbeitsgruppe mit einer kleineren speziellen Aufgabe.

weitere Ansprechpartner: Dr. J. Kroseberg, Dr. M.A. Pleier, Dr. M. Cristinziani
6848 Praktikum in der Arbeitsgruppe: Detektorentwicklung und Teilchenphysik an einem Elektron-Positron-Linearcollider / Laboratory in the Research Group: Detector Development and Particle Physics at an Electron-Positron Linear Collider (D/E)
pr, ganztägig, ca. 4 Wochen n. Vereinb., vorzugsweise in den Semesterferien, PI
  Dozent(en): K. Desch u.M.
  Fachsemester: 7 und höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Vorlesungen über Teilchenphysik
  Inhalt: In einem 4 wöchigen Praktikum wird den Studierenden die Möglichkeit gegeben

anhand eines eigen kleinen Projektes einen Einblick in die Arbeitsweise

der experimentellen Hochenergiephysik zu bekommen.

Themen werden bei der Vorbesprechung vereinbart.

Möglichkeiten (Beispiele):

- Simluation von Prozessen am International Linear Collider

- Messungen an einer Zeitprojektionskammer
  Literatur: wird ausgegeben
  Bemerkungen: Eine frühe Anmeldung ist erwünscht bei Prof. Desch, Dr. P. Wienemann oder Dr.
J. Kaminski
6849 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  For term nos.: 6. semester or higher
  Hours per week: Block course, 4 weeks
  Prerequisites: basics of programming language (e.g. C, C++, Pascal)
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.

Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:

Prof. Dr. K. Lehnertz

email: klaus.lehnertz@ukb.uni-bonn.de
6852 Praktikum in der Arbeitsgruppe: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten / Laboratory in the Research Group: Setup of detector components, electronics and data acquisition, analysis of data from the Crystal Barrel Experiment at ELSA, simulation of detector components (D/E)
pr, ganztägig, 2-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., HISKP
  Dozent(en): R. Beck, K.-T. Brinkmann, U. Thoma
  Fachsemester: ab 6.
  Wochenstundenzahl: ganztägig, 2-4 Wochen
  Erforderliche Vorkenntnisse:  
  Inhalt: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse
von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten.
Setup of detector components, electronics and data aquisition, analysis of
data from the Crystal Barrel Experiment at ELSA, simulation of detector
components (D/E)
6854  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E)
pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
  Dozent(en): K. Buse u.M.
  Fachsemester: ab 5.
  Wochenstundenzahl: Block
  Erforderliche Vorkenntnisse: Vordiplom oder äquivalente Leistungen im Bachelor-Studium
  Inhalt: Die Arbeitsgruppe ist auf drei Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, ferroelektrische Domänen sowie Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden.

The research group is active in the following three areas: dielectric nano crystals and their optical properties, ferroelectric domains, as well as nonlinear optics – in particular optical parametrical oscillators and terahertz generation. We offer internships related to these topics.

  Literatur: wird zur Verfügung gestellt
  Bemerkungen: keine
6855 Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Dozent(en): D. Meschede u.M.
  Fachsemester: ab 5. Semester/3. year of studies
  Wochenstundenzahl: 30 days
  Erforderliche Vorkenntnisse: Two years of physics studies
  Inhalt: Practical training in the reserach group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations

The minimum duration is 30 days, or 6 weeks.
  Literatur: will be individually handed out
  Bemerkungen: Projects are always available. See our website.
6856 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Fachsemester: ab 5.
  Wochenstundenzahl: 2-6 Wochen (ganztägig) nach Vereinbarung
  Erforderliche Vorkenntnisse: Vordiplom, Quantenmechanik-Vorlesung
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

6857 Bastelseminar Optik und Atomphysik
pr, Mi 14-16, IAP
Vorbesprechung: Mi, 15.4.09, 14 Uhr, HS, IAP
  Dozent(en): M. Weitz u.M.
  Fachsemester: ab 7.
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung:
Mi 15.April um 14 c.t.
6858 Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin
pr, Kliniken Venusberg
(Teilnahme am Seminar "Medizinische Physik" erforderlich)
  Dozent(en): K. Lehnertz, C. Berg, P. David, K. Reichmann, F. Träber, P. Trautner
  Fachsemester: 5-8
  Wochenstundenzahl: 2+1
  Erforderliche Vorkenntnisse: Teilnahme am Seminar "Medizinische Physik: Physikalische Grundlagen der medizinischen Bildgebung"
  Inhalt: Vertiefung der Seminarthemen;
Praktische Beispiele der Bildgebung in der pränatalen Diagnostik, Nuklearmedizin, Radiologie und Neurowissenschaften
  Bemerkungen: Termine werden im Laufe des Semester bekannt gegeben
6933 Physics of the interstellar medium
Di 16-19, HS, Astronomie
Übungen n. Vereinbarung
  Dozent(en): U. Klein, J. Kerp
  Fachsemester: ab 7.
  Wochenstundenzahl: 3
  Erforderliche Vorkenntnisse: E-Dynamik
  Inhalt: · Historic overview

· Continuum radiation

· Dispersion and polarisation

· Processes at the atomic level

· Line radiation (emission and absorption) and gas parameters to be derived

· Neutral gas

· Ionised gas

· Hot gas

· Dust: quantity, formation, destruction, observability

· Molecules: quantity, formation, destruction, observability

· Energy balance of the ISM

· Structure and evolution of the interstellar medium
  Literatur: James Lequeux
The Interstellar Medium
Astronomy and Astrophysics Library, 2004

Lyman Spitzer
Physical Processes in the Interstellar Medium
Wiley Classics Library

K.S. de Boer
Physics and the ISM, Lecture Notes
6934  Introduction to galactic and extragalactic X-ray astronomy
Fr 13-15, R. 1.11
  Instructor(s): T. Reiprich
  For term nos.: 5 or higher
  Hours per week: 2
  Prerequisites: Introductory courses on astronomy, atomic physics, and hydrodynamics would be useful.
  Contents: X-rays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of modern X-ray observations of, e.g., remnants of exploded stars, the vicinities of lightweight and supermassive black holes, and collisions of galaxy clusters, the most massive structures in the Universe. The current and future space-based instruments used to carry out such observations will be described. At the end of the lecture there will be two lab sessions. The participants will learn how to download, reduce, and analyze recent X-ray data from a satellite observatory.
  Literature: Lecture notes will be provided.
  Comments: Due to renovations, the lecture room will likely change to 0.05.
6935 Observational cosmology
Mi 11-13, MPIfR, HS 0.01
  Instructor(s): F. Bertoldi, C. Porciani
  For term nos.: 5 and up
  Hours per week: 2+1
  Prerequisites: Basic astronomy.
  Contents: An introduction to past and current experiments in cosmology.
Brief history of cosmology and its initial discoveries: cosmic expansion, cosmic microwave background.
Overview of modern cosmological experiments, their major aims and technology: constraints on the Big
Bang and dark energy, what do we learn from the CMB power spectrum and polarization, the Sunyaev-
Zeldovich effect as a tracer of large scale structure, Supernova Ia distance measures and dark energy,
the formation of large scale structure and of galaxies, the epoch of reionization and the first stars,
high-redshift galaxies and quasars. An introduction to the major cosmology experiments, their
methods and aims: APEX, SPT, ACT, Planck, Herschel, ALMA, LOFAR, SKA, Pan-STARRS, EUCLID, ...
  Literature: E.g.:

  • "Cosmological Physics", Peacock, Cambridge Univ. Press.

  • "Science Vision for European astronomy" http://www.astronet-eu.org/-Science-Vision-

  • References to current review articles will be given.

  Comments: For for M.Sc. credit, the student may take excercises or a project.
If the time inconvenient, we can reconsider an alternative - please contact Frank Bertoldi.
6936  Wave optics and astronomical applications
Mi 15.30-17, MPIfR, HS 0.02
  Dozent(en): G. Weigelt
  Fachsemester: ab 1.
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Keine
  Inhalt: Fourier mathematics and Fourier optics,
digital image processing,
Michelson interferometry,
speckle interferometry,
Knox-Thompson method,
bispectrum speckle interferometry,
interferometric spectroscopy,
optical long-baseline interferometry
  Literatur: J.W. Goodmann, Statistical Optics (Wiley Interscience)
J.W. Goodmann, Fourier Optics (McGraw Hill)
6937 Nucleosynthesis
Do 11-13, Fr 9, R. 0.05
  Instructor(s): N. Langer
  For term nos.: 6+
  Hours per week: 3 + exercises
  Prerequisites: Stars and Stellar Evolution
  Contents: The principle aim of this course is to achieve an understanding of the
origin of the elements, i.e. of the abundance distribution of all stable
isotopes in our solar system and elsewhere in the universe. As the vast
majority of all isotopes is formed by stars, a basic knowledge of stellar
structure and evolution is required to follow this course. The following
subjects are considered:

- Thermonuclear reaction rates and nuclear networks
- Big bang nucleosynthesis
- Hydrostatic nuclear burning in stars
- Explosive nucleosynthesis in massive stars
- Explosive burning of degenerate matter in white dwarfs
- s-Process nucleosynthesis in AGB stars
- s-Process nucleosynthesis in massive stars
- The r-Process and the p_Process in Supernovae
- Element formation in the most massive stellar objects
- Cosmic ray induced element formation
- Principles of the chemical evolution of Galaxies
  Literature: Lecture Manuscript
6938 Optisches Beobachtungspraktikum
ges. Ankündigung
  Dozent(en): M. Geffert, T. Erben
  Fachsemester: 3
  Wochenstundenzahl: 3
  Erforderliche Vorkenntnisse: Basic knowledge of astronomy
  Inhalt: The students shall gain the basic knowledge of both, classical and modern optical observations

The methodology of optical observations (photometry, spectroscopy) is presented tailored to stellar populations, variable stars, star clusters, galaxies. It includes procedures for multi-object spectroscopy, extinction problems, analysis of CCD-data, software modules of IRAS and MIDAS, PSF-fitting, etc.
Practical experience is obtained at the Hoher List Observatory. Possibilities of observations with the VLT and the HST are presented.

Requirements for the submodule examination (written report); successful work with the exercises
  Literatur: Provided upon registration
  Bemerkungen: Students may contact:
M. Geffert (geffert@astro.uni-bonn.de)

6939  Stellar and solar coronae
Do 9-10.30, MPIfR, HS 0.01
  Instructor(s): M. Massi
  For term nos.: 5
  Hours per week: 2+1
  Contents: T Tauri (young stellar systems not yet in Main Sequence) and RS CVn systems (evolved stellar systems that already left the Main Sequence), although very diverse systems, have similar flare activities observed at radio and X-ray wavelengths. The flares in both systems are several orders of magnitude stronger than those of the Sun.

The origin of this activity, defined "coronal activity", depends on the convective zone, the rotation, the formation and dissipation of magnetic fields. In general terms: This is a mechanism of the same type as on the Sun, but enforced by the binary nature of these systems.

In these lectures we will explore a link between the amplification of initial magnetic fields by dynamo action in several rotating systems ( Sun, binary systems and accretion discs around black holes) and the release of magnetic energy into a corona where particles are accelerated. Together with the basic theory there will be as well illustrated the latest progress in the research on stellar coronal emission derived from recent space missions and high-resolution radio observations.

  Literature: Literature references will be provided during the course
  Comments: http://www.mpifr-bonn.mpg.de/staff/mmassi/#coronae1
6931  Astrophysics of galaxies
Mo 15-18, R. 1.11
Übungen: 2 st n. Vereinb.
  Instructor(s): P. Kroupa, H. Baumgardt
  For term nos.: 7. and 8.
  Hours per week: 3+2
  Prerequisites: The following lectures ought to have been attended: Introduction to Astronomy I and II, Stars and Stellar Evolution, The Interstellar Medium
  Contents: The types of galaxies;

foundations of stellar dynamics (Jeans equations, relaxation time);

elliptical galaxies;

disk galaxies;

stellar populations in galaxies;

formation of galaxies;

dwarf galaxies (normal dwarfs, tidal dwarfs, ultra-compact dwarfs);

galactic nuclei and their supermassive black holes;

dark matter and alternatives to Newtonian gravity.

  Literature: Galactic dynamics by J.Binney and S.Tremaine (1987, Princeton University Press);

Galactic Astronomy by J.Binney and M.Merrifield (1998, Princeton University Press);

Galaxies in the Universe by L.Sparke and J.Gallagher (2000, Cambridge University Press)
6963  Seminar on radio astronomy
Do 13-14.30, R. 1.11
  Instructor(s): J. Jorgensen, F. Bertoldi, U. Klein
  For term nos.: -
  Hours per week: -
  Contents: The "Star Formation - Near and Far" journal club is an informal forum for students, post docs and staff
to meet and discuss recent articles from the literature. The focus of the journal club is "star formation"
in a broad sense: what are the conditions for and impact of star formation from circumstellar disks in
nearby molecular clouds to extragalactic scales.

Each week we have different presenters leading the discussion based on one (or more) papers related
to this topic. The emphasis is on an informal discussion about the premises and impact of the selected
papers. Since the audience come from rather different backgrounds we encourage the leaders of the
discussions to pay special attention to placing the presented papers into a broader context.
  Literature: Announced from week to week.
6964  Seminar on theoretical stellar dynamics
Fr 9-11, R. 3.19
  Instructor(s): P. Kroupa, H. Baumgardt
  For term nos.: 5th and upwards
  Hours per week: 2
  Prerequisites: Diplom in physics.
  Contents: Formation of planetary and stellar systems;
Stellar populations in clusters and galaxies;
Processes governing the evolution of stellar systems.
  Literature: Current research papers and own research.
  Comments: Students and post-docs present the current state of their own research to a critical audience.
6966  Seminar on star clusters and dwarf galaxies
Fr 14-16, R. 3.19
  Instructor(s): H. Baumgardt, P. Kroupa
  For term nos.: 7. and higher
  Hours per week: 2
  Prerequisites: Vordiploma in physics/Bachelor in physics;

The lecture "Stars and Stellar Evolution" (astro811);

The lecture "Astrophysics of Galaxies" (astro821)
  Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stellar populations, star clusters and dwarf galaxies will be presented and discussed.
  Literature: Latest astro-ph pre-prints, or recently published reseach papers.

  Comments: The students will be introduced to the newest state of knowledge in the field of star clusters and dwarf galaxy research. They will familiarise themselves with open questions and acquire knwoledge on the newest methods in research.

This is course astro893 in the MAp programme.
6967 Seminar zur Öffentlichkeitsarbeit: Astronomie vor Ort
2-stündig, n. Vereinbarung
  Dozent(en): M. Geffert
  Fachsemester: 3
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Grundkenntnisse Astronomie
z.B. aus Einführungsvorlesungen
  Inhalt: Ziel des Seminars ist Grundkenntnisse in der Öffentlichkeitsarbeit im Fach Astronomie zu erwerben. Im Rahmen des Seminars sollen eigene Beiträge zur Öffentlichkeitsarbeit (z.B. Workshops für Kinder, Powerpoint Präsentationen, etc.) vorbereitet und durchgefuehrt werden.
Insbesondere ist die Planung von Projekten für das Astronomiezelt der Bonner Universität vom 24. bis 27. Juni 2009 vorgesehen.
  Literatur: Himmelsjahrbücher
z.B. Kosmos Himmelsjahr 2009

Weitere Bücher /Artikel werden zu Beginn des Seminars bekannt gegeben.
  Bemerkungen: Erstes Treffen zur Vorbereitung des Seminars ist am 21. April um 19 Uhr im
Argelander-Institut für Astronomie (AIfA)
Auf dem Hügel 71, 53121 Bonn
(Treffpunkt Eingangshalle)
Dort werden die weíteren Termine festgesetzt
Wer an diesem Datum nicht kann, möchte sich bitte mit
M. Geffert (geffert@astro.uni-bonn.de) in
Verbindung setzen
6968 Seminar on strong gravitational lensing and lens modelling
Fr 16-18, R. 3.19
  Instructor(s): O. Wucknitz u.M.
  For term nos.: >= 5
  Hours per week: 2
  Prerequisites: basic understanding of astronomy and gravitational lenses in particular
  Contents: Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling
  Comments: The format of this seminar is a mixture of more formal presentations and informal discussions.
6969 IMPRS-Seminar
Mo 13, HS 0.01, MPIfR
  Instructor(s): A. Zensus, F. Bertoldi, U. Klein, K. Menten, P. Schneider, G. Weigelt, A. Eckart (Köln)
  For term nos.: Diploma or Master degree required
  Hours per week: 1
  Contents: The bi-weekly seminar of the IMPRS offers the members of the Research
School the opportunity to report about the progress of their PhD work. The
topics are of general interest for undergraduate students, and include research
topics such as Active Galactic Nuclei, Star Formation, Infrared Astronomy,
Theoretical Astronomy, or Cosmology.
  Comments: Every second week, at 13:00 c.t.
6961  Seminar der Astronomie / Astrophysik
Mo 14-15.30, HS, Astronomie
  Instructor(s): P. Kroupa, H. Baumgardt, F. Bertoldi, J. Kerp, U. Klein, N. Langer, M. Massi, K. Menten, C. Porciani, T. Reiprich, P. Schneider, G. Weigelt, O. Wucknitz
  For term nos.: Vordiplom in physics
  Hours per week: 2
  Prerequisites: Lectures: Introduction to Astronomy I and II.
  Contents: Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, quasars, cosmology).
  Literature: Current research papers.
  Comments: The students will learn to hold a formal but pedagogical presentation about a subject of current international research.

Start: 20.04.