Kommentiertes Vorlesungsverzeichnis Sommersemester 2010 |
![]() |
physics635 | Laser Spectroscopy Tu 8-10, Th 14-16, HS, IAP Exercises: 1 hr in groups included VEXP, WPVEXP |
|
Instructor(s): | F. Vewinger | |
For term nos.: | ab 5. Semester | |
Hours per week: | 3+1 | |
Prerequisites: | Optics, Atomic physics, Knowledge in Laser physics is helpful | |
Contents: | The lecture gives an introduction in the field of optical spectroscopy, covering fundamental concepts as well as applications of spectroscopy. On the fundamental side, the lecture focusses on the physical principles of atomic and molecular spectra, as well as the principles of different spectroscopy techniques. Here both the fields of low and high resolution spectroscopy is discussed. Important research applications of spectroscopy lie in the determination of fundamental constants and their possible time variation. The "real-world" applications discussed in the lecture include topics such as trace gas analysis, optical clocks and lasers in medicine. | |
Literature: | W. Demtröder; Laser spectroscopy (Springer) S. Svanberg; Atomic and molecular spectroscopy: Basic aspects and practical applications (Springer 2001) N. Bloembergen; High resolution laser spectroscopy (Springer 1976) M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997) R. Boyd; Nonlinear Optics (Academic Press 2003) R. Menzel; Photonics (Springer, Berlin 2001) | |
Comments: | The lecture will be held in english unless everybody understands german. | |
physics633 | High Energy Collider Physics Tu 14-16, HS I, PI, We 8-10, HS, IAP Exercises: 1 hr in groups included VEXP, WPVEXP |
|
Instructor(s): | E. von Törne, N. Wermes | |
For term nos.: | 7 or higher | |
Hours per week: | 3+1 | |
Prerequisites: | Introductory Particle Physics + Quantum Mechanics | |
Contents: | This course is one of two independent and complementary advanced courses on experimental particle physics, deepening and widening the topics covered in the basic "Particle Physics" lecture. Here, the emphasis is on experimental tests of QCD, physics at hadron colliders, and heavy quark physics. Topics are selected from the following areas: QCD, quarks, and gluons; hadrons and jets; ep scattering at HERA and proton structure; physics at pp colliders; physics at the B factories; top quark studies at the Tevatron and LHC; searching for the Higgs boson; looking beyond the Standard Model. | |
Literature: | Recommended textbooks include:
Additional and more specific suggestions for further reading will be given during the course. | |
Comments: | Excercises will be held Thu 14-16 every other week (alternating with two-hour lectures). | |
physics634 | Magnetism and Superconductivity Th 12, Fr 8-10, HS, IAP Exercises: 1 hr in groups VEXP, WPVEXP |
|
Instructor(s): | M. Fiebig | |
For term nos.: | from 6th Semester | |
Hours per week: | 3 + 1 | |
Prerequisites: | Basic knowledge in solid state physics | |
Contents: | Magnetism and superconductivity are typical examples for collective phenomena, that is, phenomena that cannot be described within the single-electron picture of semiconductor physics. Here the standard approaches to magnetism and superconductivity are introduced with an emphasis on the experimental aspects of both phenomena. Links to the related theory lecture (physics638, J. Kroha) and to optical experiments are highlighted. | |
Literature: | 1) L. P. Lévy: Magnetism and superconductivity, Springer (2000) 2) P. Mohn: Magnetism in the Solid State - An Introduction, Springer (2005) 3) J. Crangle: Solid State Magnetism, Van Nostrand Reinhold (1991) 4) C. N. R. Rao, B. Raveau: Colossal Magnetoresistance […] of Manganese Oxides, World Scientific (2004) 5) J. F. Annett: Superconductivity, superfluids and condensates, Oxford University Press (2004) 6) A. Mourachkine: High-Temperature Superconductivity in Cuprates […], Springer/Kluwer (2002) | |
Comments: | ||
physics636 | Advanced Theoretical Particle Physics Mo 12, Th 10-12, HS I, PI Exercises: 2 hrs in groups VTHE, WPVTHE |
|
Instructor(s): | S. Förste | |
For term nos.: | 7 | |
Hours per week: | 3 + 2 | |
Prerequisites: | Course in theoretical particle physics | |
Contents: | Introduction to supersymmetry and supergravity Supersymmetric extensions of the electroweak standard model Supersymmetric grand unification Theories of higher dimensional space time Unification in extra dimensions | |
Literature: | H. P. Nilles, Physics Reports 110C (1984) 1 D. Bailin and A Love, IOP Publishing Ltd. 1994 | |
Comments: | ||
physics637 | Advanced Theoretical Hadron Physics We 10-13, SR II, HISKP Exercises: 2 hrs in groups VTHE, WPVTHE |
|
Instructor(s): | A. Nogga, A. Wirzba | |
For term nos.: | 8 | |
Hours per week: | 3+2 | |
Prerequisites: | Theoretical Hadron Physics (physics616) or equivalent | |
Contents: |
| |
Literature: |
| |
Comments: | ||
physics753 | Theoretical Particle Astrophysics Tu 16-18, Fr 12, HS I, PI Exercises: 2 hrs in groups VTHE, WPVTHE |
|
Instructor(s): | M. Drees | |
For term nos.: | 8 and higher | |
Hours per week: | 3+2 | |
Prerequisites: | The Standard Model of particle physics. Some knowledge of cosmology and general relativity is helpful, but not essential. | |
Contents: |
| |
Literature: | Kolb and Turner, "The Early Universe" is still the best introduction to this field. | |
Comments: | Note the complementary lectures by Marek Kowalski (physics711), where many of the experimental techniques and astronomical observations relevant for this class will be described. Note also the joint (theory & experiment) seminar on astroparticle physics (physics658, by Drees and Kowalski). | |
physics755 | Quantum Field Theory Tu 14-16, SR II, HISKP, We 8, HS I, PI Exercises: 2 hrs in groups VTHE, WPVTHE |
|
Dozent(en): | A. Rusetsky, U. Meißner | |
Fachsemester: | 6 | |
Wochenstundenzahl: | 3+2 | |
Erforderliche Vorkenntnisse: | QM I , QM II | |
Inhalt: |
| |
Literatur: | M.E. Peskin and D.V. Schroeder, An Introduction to QFT, Westview Press S. Weinberg, The Quantum Theory of Fields, Vol. I,II, Cambridge Univ. Press J.D. Bjorken and S.D. Drell, Relativistische Quantenmechanik, Wissenschaftsverlag J.D. Bjorken and S.D. Drell, Relativistische Quantenfeldtheorie, Wissenschaftsverlag L.H. Ryder, Quantum Field Theory, Cambridge University Press S.J. Chang, Introduction to QFT, World Scientifc * P. Ramond, Field Theory : A Modern Primer, Westview Press * N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, John Wiley & Sons * C. Itzykson and J.-B. Zuber, Quantum Field Theorz, McGraw-Hill | |
Bemerkungen: | (*) stands for the additional literature | |
physics773 | Physics in Medicine II: Fundamentals of Medical Imaging Mo 9-11, We 12, SR I, HISKP Exercises: 1 hr in groups VANG, WPVANG |
|
Dozent(en): | K. Lehnertz | |
Fachsemester: | 5-8 | |
Wochenstundenzahl: | 3+1 | |
Erforderliche Vorkenntnisse: | Vordiplom/Bachelor | |
Inhalt: | Introduction to physical imaging methods and medical imaging (1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI (1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect (1b) applications: analysis of structure and function (2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging (2a) Basics of neuroelectromagnetic activity, source models (2b) instrumentation, detectors, SQUIDs (2c) signal analysis, source imaging, inverse problems, applications | |
Literatur: | 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl. 2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner 3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol 4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000 5. W. Buckel: Supraleitung, VCH Weinheim, 1993 6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998 More literature will be offered | |
Bemerkungen: | Beginning: Mo, Apr 12; 9:00 ct | |
physics639 | Advanced Topics in High Energy Particle Physics Tu 12, Th 8-10, HS, IAP Exercises: 1 hr in groups |
|
Dozent(en): | I. Brock | |
Fachsemester: | Master or PhD studies | |
Wochenstundenzahl: | 3 | |
Erforderliche Vorkenntnisse: | physics611 Particle Physics | |
Inhalt: | These lectures complement the existing courses in particle physics covering the current data-taking particle physics experiments. Topics that will be discussed include neutrino masses and oscillations, CP violation in the K and B systems and luminosity measurement at colliders. Suggestions for further topics are welcome, e.g. dark matter searches. | |
Literatur: | Will be given during the lecture | |
Bemerkungen: | Course is suitable for master and PhD students | |
physics711 | Particle Astrophysics and Cosmology Mo 11, HS, IAP, Tu 8-10, SR I, HISKP Exercises: 1 hr in groups |
|
Instructor(s): | M. Kowalski | |
For term nos.: | 7 | |
Hours per week: | 3+1 | |
Prerequisites: | ||
Contents: | Overview of cosmological observations Determination of Primordial Nucleosynthese Measurement of Cosmic Microwave Background Dark matter constraints (direct and indirect detection as well as astrophysical constraints) Dark Energy constraints Neutrino masses as obtained from the cosmos and from the laboratory Neutrino mixing: observations and experiments Neutrinos from SN1987A and other core collapse Supernovae Cosmic ray observations Cosmic ray detection techniques Gamma ray observations & techniques High energy neutrino observations & techniques | |
Literature: |
| |
Comments: | This course will be given in the context of physics 658 and physics 753. It is not required to attend the other courses to follow, but they complement this course. | |
physics712 | Advanced Electronics and Signal Processing We 14-16, Fr 12, HS, IAP Exercises: 1 hr in groups |
|
Instructor(s): | M. Barbero, F. Hügging, H. Krüger | |
For term nos.: | ab 5. | |
Hours per week: | 3+1 | |
Prerequisites: | Electronics Lab Course | |
Contents: | This is a lecture which we intend to establish within the new BSc/MSc and Graduate School systems for the instrumentation. The goal of the course is to provide the base knowledge for the experimental physicist in processing and reading out signals from experiments. Provisional content 1. Electronics Devices 2. Important Circuits (current mirrors, amplifiers, digital circuits ...) 3. Readout Techniques (amplification, filtering, discrimination ...) 4. Noise and Resolution 5. Introduction to micro electronics and VLSI Design 6. Radiation Effects 7. Micro Pattern Detectors for different applications 8. Tracking Techniques 9. New developments in tracking detectors for HEP | |
Literature: | R. Müller, Grundlagen der Halbleiterelektronik Bd. 1+2 S.M. Sze Semiconductor Devices S.M. Sze Semiconductor Devices (Physics and Technology) K.H. Rohe Elektronik für Physiker, Horowitz The Art of Electronics, - Hill Cambridge-University Press Gray Analog Integrated Circuits - Meyer | |
Comments: | ||
physics716 | Statistical Methods of Data Analysis Mo 9-11, HS, IAP Exercises: 1 hr in groups |
|
Instructor(s): | K. Desch | |
For term nos.: | >4 | |
Hours per week: | 2+1 | |
Prerequisites: | Mathematics of first three semesters | |
Contents: | see eCampus | |
Literature: | R. Barlow, "Statistics, A Guide to the Use of Statistical Methods in the Physical Sciences", John Wiley Verlag G. Cowan, "Statistical Data Analysis", Oxford University Press S. Brandt, "Datenanalyse", BI, Wissenschaftsverlag | |
Comments: | Lecture will be given, depending on the audience, in German or in English | |
physics739 | Lecture on Advanced Topics in Photonics: "Ultrashort Laserpulses: Generation and Applications" Fr 10-12, HS, IAP Exercises: 1 hr in groups |
|
Instructor(s): | F. Vewinger | |
For term nos.: | Master of Physics | |
Hours per week: | 2+1 | |
Prerequisites: | Basic knowledge in optics, atomic physics and laser physics | |
Contents: | The lecture gives an overview on different techniques for the generation, amplification and the characterization of ultrashort pulses, i.e. optical pulses with a pulse length below 10 picoseconds. These pulses have gained much interest in recent years, as they allow the time-resolved observation of many different processes, e.g. the vibration of molecules, the dynamics within solids, the breaking and formation of chemical bonds, and very recently, the release of a single electron from an atom. Some of these applications will be discussed in the lecture. Another interesting feature of short pulses that will be discussed in the elcture is their enormous bandwidth, which e.g. for an visible pulse of a few femtoseconds length spans a few ten nanometers. This lead to the development of optical frequency combs, which allows the precise measurement of (absolute) frequencies by bridging the gap from the cesium clock transition to the visible/UV regime. The broad bandwidth also allows for the shaping of the pulses, which has become a widely used tool in physical chemistry. | |
Literature: | Claude Rulliere, Femtosecond laser pulses: principles and experiments; Springer Berlin 1998; P. Hannaford, Femtosecond laser spectroscopy; Springer New York 2005 Jean-Claude Diels and Wolfgang Rudolph; Ultrashort laser pulse phenomena fundamentals, techniques, and applications on a femtosecond time scale Academic Press, San Diego 1996 | |
Comments: | The lecture is held in english unless everybody speaks german | |
physics751 | Group Theory We 14-16, Fr 9, HS I, PI Exercises: 2 hrs in groups |
|
Dozent(en): | S. Förste, C. Lüdeling | |
Fachsemester: | 1st Term (Master in Physics) | |
Wochenstundenzahl: | 3 + 2 | |
Erforderliche Vorkenntnisse: | some quantum mechanics, basic knowledge of linear algebra | |
Inhalt: |
| |
Literatur: |
| |
Bemerkungen: | ||
physics752 | Superstring Theory Tu 12, Fr 14-16, HS I, PI Exercises: 2 hrs in groups |
|
Dozent(en): | A. Klemm | |
Fachsemester: | 8 | |
Wochenstundenzahl: | 3 | |
Erforderliche Vorkenntnisse: | Quantum Field Theory, Theoretical Particle Physics, General Relativity | |
Inhalt: | Conformal field theory, Bosonic string theory, Compactification of extra dimensions, Superstring theory, Heterotic strings, Dualities, D-branes, M-theory | |
Literatur: | D. Lust, S. Theisen, Lectures on String Theory (Springer, New York 1989) M. Green, J. Schwarz, E. Witten, Superstring Theory 1+2 (Cambridge Univiversity Press 2003) J. Polchinski, String Theory 1+2 (Cambridge Univiversity Press, 2005) | |
Bemerkungen: | Lecture will be held in English or German at the discretion of the audience. The first lecture will take place on Thursday, April 5th at 2 pm. | |
physics774 | Electronics for Physicists Tu 10-12, Th 12, HS, HISKP Exercises: 1 hr in groups |
|
Dozent(en): | P.-D. Eversheim | |
Fachsemester: | 5 | |
Wochenstundenzahl: | 3+1 | |
Erforderliche Vorkenntnisse: | ||
Inhalt: | Zu den "klassischen" Fähigkeiten eines Experimentalphysikers gehört es, gegebenenfalls die Experimentiergeräte selbst zu bauen, die er benötigt. Mit Blick auf die wachsende elektronisch gestützte Ansteuerung und Auslese der Experimente nehmen Kenntnisse in Elektronik mittlerweile die Rolle einer Schlüsselfertigkeit für einen Experimentalphysiker ein. Das Ziel dieser Vorlesung ist es die Studierenden insbesondere anhand beispielgebender Experimente zu befähigen, Lösungskonzepte zu vorgegebenen Problemstellungen zu erarbeiten. Ein Schwerpunkt der Vorlesung besteht darin zu zeigen, dass viele Lösungen bzw. Lösungskonzepte aus anderen Gebieten der Physik bekannt sind (Quantenmechanik, Optik, Mechanik, Akustik, . . .). Am Ende der Vorlesung sollte der Studierende: i) einen Überblick haben über die gängigsten Bauelemente in der Elektronik. ii) ein Bewußtsein besitzen für Probleme im Umgang mit elektronischen Bauelementen und Baugruppen. iii) Konzepte verstehen, die eine Analyse und Synthese des dynamischen Verhaltens von Systemen gestatten. One of the "classic" abilities of an experimentalist is to build himself the instruments he needs, if necessary. In view of the growing electronics aided control and acquisition of experiments the knowledge of electronics becomes meanwhile a key skill of an experimentalist. The intention of this lecture is to enable students by means of exemplary experiments to work out solutions for given problems. A focus of this lecture is to show that many of these solutions are known from other fields of physics (quantum mechanics, optics, mechanics, acoustics, . . .). At the end of this lecture, the student should: i) have an overview over the most common parts in electronics. ii) be concious about the problems of handling electronic parts and assemblies. iii) understand the concepts that allow an analysis and synthesis of the dynamic behavior of systems. | |
Literatur: |
| |
Bemerkungen: | ||
physics775 | Nuclear Reactor Physics Th 14-16, SR I, HISKP |
|
Instructor(s): | A. Gillitzer, R. Jahn | |
For term nos.: | 6-7 | |
Hours per week: | 2 | |
Prerequisites: | Basic understanding of nuclear physics | |
Contents: | - physics of nuclear fission - basic principles of nuclear reactors: - neutron moderation, absorption, diffusion, etc - criticality - different reactor types - radioactive waste management - safety considerations, accidents - natural reactor - research reactors - future reactor concepts - fusion reactors - transmutation An excursion to a (terminated) nuclear power plant is planned | |
Literature: | H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture) M. Borlein: Kerntechnik, Vogel (2009) W. M. Stacey: Nuclear Reactor Physics, Wiley & Sons (2007) | |
Comments: | ||
Semiconductor Physics and Nanostructures (Videoübertragung) Tu 12-14, Konferenzraum II, Zi. 166, PI |
||
Instructor(s): | R. Wördenweber (Jülich) | |
For term nos.: | Master of Physics and Diploma/PhD-students | |
Hours per week: | 2 | |
Prerequisites: | ||
Contents: | Semiconducting material and (nano-)structures represent the backbone of modern electronics and information technology. At the same time they are fundamental to the research of problems of modern solid state physics. This lecture will provide an introduction to semiconductor physics and its application. First, a fundamental introduction will be given including various aspects of semiconducting material, e.g., crystalline structure, band structure, electronic and optical properties. Second, heterostructures, junction and interfaces will be discussed leading to basic device concepts. Finally, aspects of modern semiconductor technology including thin film deposition and nanotechnology will be addressed. | |
Literature: | Will be given in the lecture | |
Comments: | The lecture will be broadcasted from cologne. Start is at 12st, not 12ct. | |
6823 | Stochastic Interacting Particle Systems Do 16-18, SR II, HISKP |
|
Dozent(en): | G. Schütz | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Quantenmechanik | |
Inhalt: | Random Walk, Exclusion Processes, Large-Scale Dynamics, Phase Transitions | |
Literatur: | G.M. Schütz, Exactly solvable models for many-body systems far from equilibrium}, in: Phase Transitions and Critical Phenomena} vol 19, ed. C. Domb and J. Lebowitz (London: Academic, 2001) H. Spohn, Large Scale dynamics of interacting particle systems}, (Springer, Berlin, 1991) Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1999) | |
Bemerkungen: | ||
6824 | Introduction to supersymmetry Blockvorlesung: 31.5.2010 - 2.6.2010 |
|
Dozent(en): | E. Kraus | |
Fachsemester: | ab 6. Semester | |
Wochenstundenzahl: | Blockvorlesung | |
Erforderliche Vorkenntnisse: |
| |
Inhalt: |
| |
Literatur: |
| |
Bemerkungen: | ||
physics652 | Seminar on Recent Topics in Nanophotonics and Nonlinear Optics Tu 14-16, HS, IAP SEXP, WPSEXP |
|
Instructor(s): | S. Linden, D. Haertle, T. Lottermoser | |
For term nos.: | 5. and higher | |
Hours per week: | 2 | |
Prerequisites: | Physics courses of the 1.-4. semesters | |
Contents: | Die Nanophotonik beschäftigt sich mit der Wechselwirkung von Licht mit Materialien, die auf einer (Sub-)Wellenlängen-Skala strukturiert sind. Durch geeignetes Design und durch den Einsatz moderner Fabrikationsmethoden lassen sich Nanostrukturen erstellen, die völlig neuartige optische Eigenschaften besitzen. Zum Beispiel kann ein Photonischer Kristall (eine periodische dielektrische Struktur) wie ein perfekter Spiegel wirken obwohl die zugrunde liegenden dielektrischen Materialien transparent sind. Andere Beispiele sind lokalisierte „Hot Spots“ in plasmonischen Materialien oder photonische Metamaterialien die einen negativen Brechungsindex aufweisen. Die nichtlineare Optik beschäftigt sich mit der Wechselwirkung von Licht und Materie bei sehr hohen Lichtintensitäten. Über einen nichtlinear optischen Effekt kann z. B. die Wellenlänge von Laserlicht verändert werden. Dies geschieht besonders effizient mit ultrakurzen Laserpulsen (weil die Spitzenintensität des Lichts sehr hoch ist) und in Kristallen, die keine Inversionssymmetrie besitzen. Das Seminar behandelt verschiedene theoretische und experimentelle Aspekte nanophotonischer und nichtlinear optischer Materialien und gibt einen Einblick in den derzeitigen Stand der Forschung. Einführungsveranstaltung: Dienstag, 20.04.2010, 14:15 Uhr, Hörsaal des IAP. Themen: 1. Photonische Kristalle (S. Linden) 2. Photonische Kristallfasern (S. Linden) 3. Plasmonik (S. Linden) 4. Metamaterialien (S. Linden) 5. Ultraschnelle Optik in magnetischen materialien (T. Lottermoser) 6. Multiferroika (T. Lottermoser) 7. Nichtlineare Optik mit magnetischen und ferrolelektrischen Domänen (T. Lottermoser) 8. Goldmine in Wissenschaft und Technik: Terahertz-Wellen (D. Haertle) 9. Licht im Käfig: Flüstergaleriemoden (D. Haertle) 10. Bildschirmanzeige ohne Strom: Elektronisches Papier (D. Haertle) ------------------------------------------------- Nanophotonics deals with the interaction of light with materials which are structured on a (sub-) wavelength scale. Proper design and fabrication of nanostructures can result in optical properties which are not available from the corresponding bulk materials. For instance, a Photonic Crystal, i.e., a periodic dielectric nanostructure, can act as perfect mirror even though the Photonic Crystal’s constituent materials are perfectly transparent. Other examples are localized “hot spots” in plasmonic materials or photonic metamaterials which exhibit a negative index of refraction. Nonlinear optics deals with the interaction of light and matter at very large light intensities. For example, a nonlinear optical effect can change the frequency of laser light. This works very efficiently with ultrashort laser pulses, since the peak intensity of these pulses is so large, and with a special category of crystals, which do not possess the inversion symmetry. The seminar covers different theoretical and experimental aspects of nanophotonic and nonlinear optical materials and gives an overview on the current status of these fascinating fields of research Kick-off meeting: Tuesday, 20.04.2010, 2:15 pm, lecture hall of the IAP. Topics: 1. Photonic Crystals (S. Linden) 2. Photonic crystal fibers (S. Linden) 3. Plasmonics (S. Linden) 4. Metamaterials (S. Linden) 5. Ultrafast optics on magnetic materials (T. Lottermoser) 6. Multiferroics (T. Lottermoser) 7. Nonlinear optics on magnetic and ferroelectric domains (T. Lottermoser) 8. Terahertz waves: gold mine for science and technics (D. Haertle) 9. Trapped light: Whispering-gallery modes (D. Haertle) 10. Image on display without current: electronic paper (D. Haertle) | |
Literature: | ||
Comments: | Information and registration: linden@physik.uni-bonn.de lottermoser@hiskp.uni-bonn.de haertle@uni-bonn.de | |
physics656 | Seminar Medical Physics: Physical Fundamentals of Medical Imaging Mo 14-16, SR I, HISKP SANG, WPSEXP |
|
Dozent(en): | K. Lehnertz, K. Maier | |
Fachsemester: | 5-8 | |
Wochenstundenzahl: | 2+1 | |
Erforderliche Vorkenntnisse: | Vordiplom/Bachelor | |
Inhalt: | Physical Imaging Methods and Medical Imaging of Brain Functions Emission Computer Tomography (PET) - basics - tracer imaging - functional imaging with PET Magnetic Resonance Imaging (MRI) - basics - functional MRI - diffusion tensor imaging - tracer imaging Biological Signals: Bioelectricity, Biomagnetism - basics - recordings (EEG/MEG) - SQUIDs - source models - inverse problems | |
Literatur: | 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000 2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl. 3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin, Springer 4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner 5. Ed. S. Webb: The Physics of Medical Imaging, Adam | |
Bemerkungen: | Time: Mo 14 - 16 and one lecture to be arranged Beginning: Mo Apr. 12 | |
physics657 | Seminar on Environmental Physics Th 13:30-15, HS 118, AVZ I SANG, WPSEXP |
|
Dozent(en): | B. Diekmann, T. Reichelt | |
Fachsemester: | ab 5 | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Vordiplom bzw. Bachelorabschluß, Teilnahme an der Vorlseung 'Umweltphysik' im Wintersemester 2009/10 wäre wünschenswert, ebenso Vorkenntnisse in Thermodynamik. | |
Inhalt: | Der Themenkatalog der erwähnten Vorlesung wird nachstehend wiedergegeben: zu diesen Themen werden Seminarvorträge nach Vorschlag der Dozenten oder auch der Studierenden vergeben-- die genaue Festlegung folgt am 11.2 in der Vorlesung um 13.30 im AVZ 118 und wird später an dieser Stelle veröffentlicht ! Do 15.10 Einfuehrung Wechselbeziehung Mensch Arbeit Energie Umwelt BD Do 22.10 Exkursion Bad Honnef AKE Herbsttagung: Desertron BD Do 29.1 relevante Messmethoden Fehlerbestimmungen, ggf Versuche BD Do 5.11 Umwelteinfluesse der Nutzung von Energie BD Do 12.11 Umweltrelevanz der Nutzung von Energie: fossile Träger BD Do 19.11 Umweltrelevanz der Nutzung von Energie: Nukleare.. (Radioaktivität) TR (!) Do 26.11 Umweltrelevanz der Nutzung von Energie: Erneuerbare BD Do 03.12 Strahlungspyhsikalische Phänomene mit Umweltrelevanz: Treibhauseffekt BD Do 10.12 Atmoshpärenchemische Phänomene mit Umweltrelevanz Ozon(löcher) BD Do 17.12 & 7.1 Umweltrelevanz der Nutzung von Energie: Nukleare.. (Bukl.Reakt....) Do 14.1 Physik der Sinne : Nase Rosenthal,Lodomez, Leppert, Haas Do 21.1 Physik der Sinne : Auge ( Funktion ..) ANdreas Bliersbach Do 28.1 Physik der Sinne : Gehör ( Schall und Lärm) BD Do 4.2 Elekromagnetische Wellen und E_Smog (BD) (Seminar), TR Do 11.2 Resümmee & Vorbesprechnung Seminar SS10 Abschlußprüfungen für Studenten des Diplomstudienganges BD/TR | |
Literatur: | Diekmann,B., Heinloth,K.: Physikalische Grundlagen der Energieerzeugung, Teubner 1997 Heinloth, K., Die Energiefrage, Vieweg 1999 Thorndyke,W., Energy and Environment, Addison Wesley 1976 Schönwiese,C.D., Diekmann,B., Der Treibhauseffekt , DVA 1986 Boeker,E.,von Grondelle,R., Physik und Umwelt,Vieweg, 1997 swie die in ecampus in den jeweiligen Vorlesungen veröffentlichten Lizeraturverweise | |
Bemerkungen: | Das Semniar wird als 2 stündige Veranstaltung angeboten. Für Diplomstudenten sind regelmäßige Teilnahme und Übernahme eines Seminarvortrages zur Erlangung eines SANG Scheines verbindlich. Masterstudenten erhalten x creditpoints für regelmäßige und Übernahme eines Seminarvortrages | |
physics658 | Seminar on Astroparticle Physics Fr 10-12, SR II, HISKP STHE, WPSTHE |
|
Instructor(s): | M. Drees, M. Kowalski, E. von Törne, S. Boeser, K. Paech | |
For term nos.: | 8 and higher | |
Hours per week: | 2 | |
Prerequisites: | Basic knowledge of the Standard Model of Particle Physics, and of Big Bang Cosmology | |
Contents: | This is a joint experimental and theoretical seminar. We hope to have approximately equal number of talks of each kind. Possible topics for talks are:
| |
Literature: | Literature for the talks will be provided during the seminar. | |
Comments: | Note that there are also lectures on astroparticle physics this term: physics711, Particle Astrophysics and Cosmology, on experimental and observational aspects, by Kowalski; and physics753, Theoretical Particle Astrophysics, by Drees. | |
physics659 | BCGS Seminar on experiments at LHC and FAIR Mo 16-18, Alternate Meetings in Bonn and Cologne in Bonn: Raum 300 PI, in Cologne: Institut für Kernphysik, Bibliothek. First meeting: 19.04 in Cologne SEXP, WPSEXP |
|
Instructor(s): | I. Brock, K. Desch, E. von Törne, N. Wermes, J. Jolie (Cologne), A. Blazhev (Cologne) | |
For term nos.: | 6 or higher | |
Hours per week: | 2 | |
Prerequisites: | introductory course on nuclear or particle physics | |
Contents: | Seminar on experiments at the new Large Hadron Collider (LHC, Geneva) and the Facility for Antiproton and Ion Research (FAIR, Darmstadt). | |
Literature: | ||
Comments: | Monday 16h - 18h Start: April 19, 2010 in Köln, 16.00 Locations: Bonn Physikalisches Institut, Raum 300, 16.15 Köln Institut für Kernphysik, Bibliothek, 16.00 The seminar is open to all physics students of Bonn and Cologne | |
6842 | Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E) http://polt05.physik.uni-bonn.de pr, ganztägig, Dauer n. Vereinb., PI |
|
Dozent(en): | H. Dutz, S. Goertz u.M. | |
Fachsemester: | 7 oder höher | |
Wochenstundenzahl: | 4 Wochen ganztägig | |
Erforderliche Vorkenntnisse: | Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik | |
Inhalt: | Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten. Thema: Forschung und Entwicklung rund ums Polarisierte Target Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten. | |
Literatur: | wird gestellt | |
Bemerkungen: | Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten. Depending on the students' preferences the course is given in German or in English. | |
6845 | Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E) (http://hep1.physik.uni-bonn.de) pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI |
|
Instructor(s): | F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M. | |
For term nos.: | 7 oder höher | |
Hours per week: | 4 Wochen ganztägig | |
Prerequisites: | Lectures on detectors and electronics | |
Contents: | Research Internship: Students shall receive an overview into the activities of a research group: here: Development of Semiconductor Detectors and Micro-Electronics | |
Literature: | will be handed out | |
Comments: | early aplication necessary | |
6846 | Praktikum in der Arbeitsgruppe: Proton-Proton-Kollisionen am LHC / Research Internship: Proton-Proton-Collisions at LHC (D/E) (http://hep1.physik.uni-bonn.de) pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI |
|
Instructor(s): | M. Cristinziani, J. Kroseberg, E. von Törne, N. Wermes u.M. | |
For term nos.: | 7 oder höher | |
Hours per week: | 4 Wochen ganztägig | |
Prerequisites: | Lectures on Particle Physics | |
Contents: | Within 4 weeks students receive an overview/insight of the research carried out in our research group. Topics: Analyses of data taken with teh ATLAS Experiment at the LHC The exact schedule depends on the number of applicants appearing at the same time. | |
Literature: | wird gestellt | |
Comments: | Early application is required Contacts: E. von Törne, M. Cristinziani, J. Kroseberg, N. Wermes | |
6847 | Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group: Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E) pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., Applications to brock@physik.uni-bonn.de, PI |
|
Dozent(en): | I. Brock u.M. | |
Fachsemester: | 7 and above | |
Wochenstundenzahl: | Full time, 3-4 weeks. Applications to brock@physik.uni-bonn.de | |
Erforderliche Vorkenntnisse: | Introductory particle physics course | |
Inhalt: | Introduction to the current research activities of the group, introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group. | |
Literatur: | Working materials will be provided. | |
Bemerkungen: | The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques. Depending on the students' preferences the course will be given in German or in English. | |
6848 | Praktikum in der Arbeitsgruppe: Detektorentwicklung und Teilchenphysik an einem Elektron-Positron-Linearcollider / Laboratory in the Research Group: Detector Development and Particle Physics at an Electron-Positron Linear Collider (D/E) pr, ganztägig, ca. 4 Wochen n. Vereinb., vorzugsweise in den Semesterferien, PI |
|
Dozent(en): | K. Desch u.M. | |
Fachsemester: | 7 und höher | |
Wochenstundenzahl: | 4 Wochen ganztägig | |
Erforderliche Vorkenntnisse: | Vorlesungen über Teilchenphysik | |
Inhalt: | In einem 4 wöchigen Praktikum wird den Studierenden die Möglichkeit gegeben anhand eines eigen kleinen Projektes einen Einblick in die Arbeitsweise der experimentellen Hochenergiephysik zu bekommen. Themen werden bei der Vorbesprechung vereinbart. Möglichkeiten (Beispiele): - Simluation von Prozessen am International Linear Collider - Messungen an einer Zeitprojektionskammer | |
Literatur: | wird ausgegeben | |
Bemerkungen: | Eine frühe Anmeldung ist erwünscht bei Prof. Desch, Dr. P. Wienemann oder Dr. J. Kaminski | |
6849 | Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie |
|
Dozent(en): | K. Lehnertz u.M. | |
Fachsemester: | 6. semester or higher | |
Wochenstundenzahl: | Block course, 4 weeks | |
Erforderliche Vorkenntnisse: | basics of programming language (e.g. C, C++, Pascal) | |
Inhalt: | This laboratory course provides insight into the current research activities of the Neurophysics group. Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group. | |
Literatur: | Working materials will be provided. | |
Bemerkungen: | Contact: Prof. Dr. K. Lehnertz email: klaus.lehnertz@ukb.uni-bonn.de | |
6853 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung laseroptischer Experimente aus den Gebieten Kristallphysik, Nichtlineare Optik, Wechselwirkung magnetischer und elektrischer Ordnung mit Licht, Dynamik von Magnetisierungsprozessen, Messablaufsteuerung eines Laserlabors / Laboratory internship on laseroptical experiments concerning crystal physics, nonlinear optics, interaction of magnetically or electrically ordered matter with light, magnetization dynamics, data acquisition control of a laser laboratory (D/E) http://hikari.hiskp.uni-bonn.de pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, HISKP |
|
Dozent(en): | M. Fiebig | |
Fachsemester: | ab 7. | |
Wochenstundenzahl: | ganztägig, ca. 4 Wochen | |
Erforderliche Vorkenntnisse: | Vorlesungs-Grundkenntnisse in Festkörperphysik und Laseroptik / basic lecture knowledge in condensed-matter physics and laser optics | |
Inhalt: | Im Rahmen der Mitarbeit an einem laufenden Experiment inklusive der eigenständigen Bearbeitung kleinerer Teilaufgaben soll die Möglichkeit gegeben werden, sich mit dem Umfeld eines Laserlabors und den Abläufen des "realen Experimentieralltags" vertraut zu machen. / Getting familiarized with the environment of a laser lab and the daily routine of experimental work by participation in ongoing experiments. | |
Literatur: | wird auf Anfrage bereitgestellt / provided on request | |
Bemerkungen: | --- | |
6854 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E) http://www.hertz.physik.uni-bonn.de/ pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI |
|
Dozent(en): | K. Buse u.M. | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | Block | |
Erforderliche Vorkenntnisse: | Vordiplom oder äquivalente Leistungen im Bachelor-Studium | |
Inhalt: | Die Arbeitsgruppe ist auf drei Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, ferroelektrische Domänen sowie Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden. The research group is active in the following three areas: dielectric nano crystals and their optical properties, ferroelectric domains, as well as nonlinear optics – in particular optical parametrical oscillators and terahertz generation. We offer internships related to these topics. | |
Literatur: | wird zur Verfügung gestellt | |
Bemerkungen: | keine | |
6856 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E) pr, ganztägig, 2-6 Wochen n. Vereinb., IAP |
|
Dozent(en): | M. Weitz u.M. | |
Fachsemester: | ab 5. | |
Wochenstundenzahl: | 2-6 Wochen (ganztägig) nach Vereinbarung | |
Erforderliche Vorkenntnisse: | Vordiplom, Quantenmechanik-Vorlesung | |
Inhalt: | Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache. | |
Literatur: | wird gestellt | |
Bemerkungen: | Homepage der Arbeitsgruppe: http://www.iap.uni-bonn.de/ag_weitz/Bonn_AG_Quantenoptik.html | |
6857 | Bastelseminar Optik und Atomphysik pr, Mo 9-11 oder 11-13, IAP Vorbesprechung: siehe Aushang |
|
Dozent(en): | M. Weitz u.M. | |
Fachsemester: | ab 7. | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Optik- und Atomphysik Grundvorlesungen, Quantenmechanik | |
Inhalt: | Diodenlaser Optische Resonatoren Akustooptische Modulatoren Spektroskopie Radiofrequenztechnik Spannungsdoppelbrechung und vieles mehr | |
Literatur: | wird gestellt | |
Bemerkungen: | Vorbesprechung: Montag, 19. April 2010 um 13:15 Uhr im IAP-Hörsaal | |
6858 | Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin pr, Kliniken Venusberg (Teilnahme am Seminar "Medizinische Physik" erforderlich) |
|
Dozent(en): | K. Lehnertz, C. Berg, P. David, K. Reichmann, F. Träber, P. Trautner | |
Fachsemester: | 5-8 | |
Wochenstundenzahl: | 2+1 | |
Erforderliche Vorkenntnisse: | Teilnahme am Seminar "Medizinische Physik: Physikalische Grundlagen der medizinischen Bildgebung" | |
Inhalt: | Vertiefung der Seminarthemen; Praktische Beispiele der Bildgebung in der pränatalen Diagnostik, Nuklearmedizin, Radiologie und Neurowissenschaften | |
Literatur: | ||
Bemerkungen: | Termine werden im Laufe des Semester bekannt gegeben | |
6859 | Engineering and characterization of nanostructures by photons, ion beam and nuclear methods Blockkurs Mai 2010 |
|
Dozent(en): | R. Vianden und Dozenten des ERASMUS Intensive Programme | |
Fachsemester: | 7+ | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Basic knowledge in nuclear and solid state physics | |
Inhalt: | This ERASMUS Intensive programme offers a unique opportunity for physicists to work together in a multinational group on methods used in the fascinating world of nanoscale science. The continuous shrinking of device dimensions introduces fundamental challenges with respect to the synthesis, characterization and physical properties of low-dimensional systems. This Erasmus Intensive Programme covers essential and advanced techniques applied to nanostructures. The topics which are discussed include hyperfine interactions, ion-solid interactions, Rutherford backscattering/Channeling, neutron diffraction/reflectivity, muon spin rotation, nuclear resonant scattering of synchrotron radiation, nuclear reaction analysis... The level of the courses is such that they are accessible for Master students, but still remain challenging for Post-docs. Typically, two lectures are scheduled in the morning, with tutorials in the afternoon which allow a more thorough discussion and problem solving. These tutorials help the participants to understand the theoretical concepts and apply them to practical situations. A visit to the Ion- and Molecular Beam Laboratory of the Nuclear Solid State Physics Group of the Katholieke Universiteit Leuven will demonstrate the use of several of the techniques discussed in real-time. | |
Literatur: | Schatz/Weidinger "Nukleare Festköperphysik" | |
Bemerkungen: | ||
6932 | Einführung in die Radioastronomie Di 13.00-14.30, HS Astronomie Übungen, 1-stündig, n. Vereinbarung |
|
Dozent(en): | J. Kerp, M. Kramer | |
Fachsemester: | 2-4 | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Physik I, II, III (IV) Astronomie I und II | |
Inhalt: | Einführung in die Radiastronomie:
| |
Literatur: | Skript zur Vorlesung | |
Bemerkungen: | Die Vorlesung wendet sich an Studierende des Bachelor Studiengangs Physik. Sie wird nur in deutscher Sprache angeboten. Anhand von Beispielen werden auch Detailkenntnisse vermittelt die durch das exemplarische Lernen leicht verständlich sein werden. Ziel ist es, einen guten Überblick über die Radioastronomie zu vermittel, der nützlich und sinnvoll für erfolgreiche Bearbeitung von Bachlorarbeiten in diesem Forschungsfeld ist. Die erste Vorlesung findet am 12.04.2010 statt. Geplant ist ein Beobachtungspraktikum im Juli 2010 am Radioteleskop Stockert (Eifel). Dort werden alle Beobachtungstechniken in der Praxis erprobt. Übungen ergänzen alle zwei Wochen die Lehrinhalte. | |
6933 | Physics of the interstellar medium Di 16-19, HS, Astronomie Exercises: 1 hr. by appointment |
|
Instructor(s): | F. Bertoldi, K.K. Knudsen | |
For term nos.: | 7+ | |
Hours per week: | 3 | |
Prerequisites: | Electrodynamics Atomic physics | |
Contents: | · Historic overview · Continuum radiation · Dispersion and polarisation · Processes at the atomic level · Line radiation (emission and absorption) and gas parameters to be derived · Neutral gas · Ionised gas · Hot gas · Dust: quantity, formation, destruction, observability · Molecules: quantity, formation, destruction, observability · Energy balance of the ISM · Structure and evolution of the interstellar medium | |
Literature: | James Lequeux The Interstellar Medium Astronomy and Astrophysics Library, 2004 A.G.G.M. Tielens The Physics and Chemistry of the Interstellar Medium Cambridge, 2006 Donald E. Osterbrock Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Palgrave Macmillan, 2005 (2nd edition) | |
Comments: | In English. The 3 hours of lecture will likely be split, with a 1-hour lecure on a different day to be agreed upon. | |
6934 | X-ray astronomy Fr 13-15, HS Astronomie Exercises: 1 hr. by appointment |
|
Instructor(s): | T. Reiprich | |
For term nos.: | 5 or higher | |
Hours per week: | 2 | |
Prerequisites: | Introductory courses on astronomy, atomic physics, and hydrodynamics would be useful. | |
Contents: | X-rays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of modern X-ray observations of all major X-ray sources, e.g., remnants of exploded stars, the vicinities of lightweight and supermassive black holes, and collisions of galaxy clusters -- the most massive objects in the Universe. The physical properties of X-ray radiation as well as current and future space-based instruments used to carry out such observations will be described. In the accompanying lab sessions, the participants will learn how to download, reduce, and analyze recent X-ray data from a satellite observatory. | |
Literature: | A bound script of the lecture notes will be provided. | |
Comments: | Due to demand for live video broadcast of the lecture, the room will likely change (check course web page). | |
6935 | Observational cosmology Mi 11-13, MPIfR, HS 0.01 Exercises: 1 hr. by appointment |
|
Instructor(s): | C. Porciani, K. Basu | |
For term nos.: | 4 and up | |
Hours per week: | 2+1 | |
Prerequisites: | Basic astronomy and cosmology. | |
Contents: | This class provides an overview of current and future experimental efforts aimed at improving our understanding of the universe, including the nature of dark matter and dark energy. After briefly reviewing the current standard cosmological model, we will focus on the motivations, techniques and aims of the leading experiments in the field. Particular attention will be devoted to: - Cosmological parameter estimation: Bayesian methods and Markov Chain Monte Carlo simulations - Experimental design: the Fisher matrix - Observation and analysis of the CMB - CMB polarization - Big Bang Nucleosynthesis - Optical galaxy redshift surveys and baryonic acoustic oscillations - Dark energy probes, photometric galaxy surveys - Cosmology with SN Ia - Cosmology with galaxy clusters, multi-wavelength observations - The Sunyaev-Zel'dovich (SZ) effect - Modeling galaxy clusters with SZ and X-ray - Reionization of the universe - Sub-millimeter galaxies - Inflation / Gravitational waves | |
Literature: | Some lecture notes and references to review articles will be given in the classroom. No textbook will be followed. For a general background, students might find useful:
| |
Comments: | For for M.Sc. credit, the student will take exercise classes. The lecture will be video broadcast for students in Koeln. For technical reasons, this may cause a change of location (even though it is unlikely). | |
6936 | Wave optics and astronomical applications Mi 15.30-17, MPIfR, HS 0.02 |
|
Instructor(s): | G. Weigelt | |
For term nos.: | ab 1. | |
Hours per week: | 2 | |
Prerequisites: | Keine | |
Contents: | Fourier mathematics and Fourier optics, digital image processing, Michelson interferometry, speckle interferometry, bispectrum speckle interferometry, interferometric spectroscopy, optical long-baseline interferometry | |
Literature: | J.W. Goodmann, Statistical Optics (Wiley Interscience) J.W. Goodmann, Fourier Optics (McGraw Hill) | |
Comments: | ||
6937 | Nucleosynthesis Do 11-13, R. 0.05 Fr 9, R. 0.05 Exercises: 1 hr. by appointment |
|
Instructor(s): | N. Langer, S. Yoon | |
For term nos.: | 6+ | |
Hours per week: | 3 + exercises | |
Prerequisites: | Stars and Stellar Evolution | |
Contents: | The principle aim of this course is to achieve an understanding of the origin of the elements, i.e. of the abundance distribution of all stable isotopes in our solar system and elsewhere in the universe. As the vast majority of all isotopes is formed by stars, a basic knowledge of stellar structure and evolution is required to follow this course. The following subjects are considered: - Thermonuclear reaction rates and nuclear networks - Big bang nucleosynthesis - Hydrostatic nuclear burning in stars - Explosive nucleosynthesis in massive stars - Explosive burning of degenerate matter in white dwarfs - s-Process nucleosynthesis in AGB stars - s-Process nucleosynthesis in massive stars - The r-Process and the p_Process in Supernovae - Element formation in the most massive stellar objects - Cosmic ray induced element formation - Principles of the chemical evolution of Galaxies | |
Literature: | Lecture Manuscript | |
Comments: | ||
6939 | Stellar and solar coronae Do 9.00-10.30, MPIfR, HS 0.01 Exercises: 1 hr. by appointment |
|
Instructor(s): | M. Massi | |
For term nos.: | 5 | |
Hours per week: | 2+1 | |
Prerequisites: | ||
Contents: | T Tauri (young stellar systems not yet in Main Sequence) and RS CVn systems (evolved stellar systems that already left the Main Sequence), although very diverse systems, have similar flare activities observed at radio and X-ray wavelengths. The flares in both systems are several orders of magnitude stronger than those of the Sun. The origin of this activity, defined "coronal activity", depends on the convective zone, the rotation, the formation and dissipation of magnetic fields. In general terms: This is a mechanism of the same type as on the Sun, but enforced by the binary nature of these systems. In these lectures we will explore a link between the amplification of initial magnetic fields by dynamo action in several rotating systems ( Sun, binary systems and accretion discs around black holes) and the release of magnetic energy into a corona where particles are accelerated. Together with the basic theory there will be as well illustrated the latest progress in the research on stellar coronal emission derived from recent space missions and high-resolution radio observations. | |
Literature: | Literature references will be provided during the course | |
Comments: | http://www.mpifr-bonn.mpg.de/staff/mmassi/#coronae1 | |
6940 | Gravitational lensing Di 10-12, HS Astronomie Exercises: 1 hr. by appointment |
|
Instructor(s): | P. Schneider, O. Wucknitz | |
For term nos.: | 8th | |
Hours per week: | 2 + 1 | |
Prerequisites: | ||
Contents: | Aims of the course: After learning the basics of gravitational lensing followed by the main applications of strong and weak lensing, the students will acquire knowledge about the theoretical and observational tools and methods, as well as about the current state of the art in lensing research. Strong emphasis lies on weak lensing as a primary tool to study the properties of the dark-matter distribution and the equation of state of dark energy Contents of the course: The detection of the deflection of light in a gravitational field was not only one of the crucial tests of Einstein's Theory of General Relativity, but has become in the past two decades a highly valuable tool for astronomers and cosmologists. It is ideally suited for studying the mass distribution of distant objects, search for compact objects as a potential constituent of the Galactic dark matter, provide powerful (and cheap) 'natural telescopes' to take a deeper look into the distant Universe, to measure the mass distribution in clusters and on larger spatial scales, and to study the relation between luminous and dark matter in the Universe. Principles and methods are described in detail and the applications will be presented. | |
Literature: | P. Schneider, C. Kochanek, J. Wambsganss; Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33. Swiss Society f Astrophysics and Astronomy (Springer, Heidelberg 2006) P. Schneider, J. Ehlers, E. F. Falco; Gravitational Lenses (Springer, Heidelberg 1992) In addition, extensive lecture notes will be distributed. | |
Comments: | ||
6941 | Galactic and intergalactic magnetic fields Mo 9-11, HS Astronomie Exercises: 1 hr. by appointment |
|
Dozent(en): | U. Klein | |
Fachsemester: | 7 | |
Wochenstundenzahl: | 2 | |
Erforderliche Vorkenntnisse: | Electrodynamics | |
Inhalt: | 1. Introduction Magnetism, physical quantities History, observational evidence 2. Radiation processes Free-free radiation Synchrotron radiation Inverse-Compton radiation Spinning dust grains 3. Diagnostics Optical polarisation Synchrotron radiation Faraday rotation Zeeman effect Polarised dust emission 5. Milky Way Diffuse ISM Molecular clouds and star-forming regions Supernova remnants Acceleration of Cosmic rays 6. External galaxies Spiral galaxies Dwarf irregular galaxies Elliptical galaxies Containment of particles and fields Galactic dynamo 7. Active Galactic Nuclei Radio galaxies Quasars Seyfert galaxies Origin of magnetic fields 8. Intergalactic magnetic fields Clusters of galaxies Radio halos Radio relics Mini-halos Magnetisation of the IGM Cosmological shacks 9. Cosmological magnetic fields | |
Literatur: | M.S. Longair: High Energy Astrophysics, Vol. 1+2 (Cambridge University Press, 2008), and recommendations in the class | |
Bemerkungen: | ||
6942 | Multiwavelength observations of galaxy clusters Mo 15.30-17, MPIfR, HS 0.01 |
|
Instructor(s): | T. Reiprich, Y. Zhang, H. Andernach | |
For term nos.: | 5 or higher | |
Hours per week: | 2 | |
Prerequisites: | Introductory Astronomy lectures. | |
Contents: | Aims of the course: To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive visible component of galaxy clusters -- the intracuster gas -- cannot be detected with optical telescopes. Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X-ray emission from the intracluster gas. In this course, the students will acquire a synoptic, mulitwavelength view of galaxy groups and galaxy clusters. Contents of the course: The lecture covers galaxy cluster observations from all wavebands, radio through gamma-ray, and provides a comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, and active supermassive black holes; cluster weighing methods, Sunyaev-Zeldovich effect, gravitational lensing, radio halos and relics, and the most energetic events in the Universe since the big bang: cluster mergers. | |
Literature: | Lecture script and references therein. | |
Comments: | ||
6943 | Hydrodynamics Mi 13.30-15.00, HS Astronomie |
|
Instructor(s): | J. Braithwaite | |
For term nos.: | >6 | |
Hours per week: | 2 | |
Prerequisites: | Thermodynamics, vector calculus, electromagnetism | |
Contents: | The bulk of the universe is fluid and so an understanding of many phenomena is impossible without a proper grasp of fluid dynamics. This course introduces the field, drawing on examples from astrophysics and atmospheric physics to illustrate the principles. Contents of the Course: The fluid approximation, Euler equations, ideal fluids, viscous fluids, diffusion of heat, sound waves, hydrostatics, flow around an object, the Bernoulli equation, the Reynolds number and other dimensionless parameters used to describe a flow, compressible and incompressible flow, supersonic and subsonic flow, shock waves (with example: supernovae), surface gravity waves, internal gravity waves, waves in a rotating body of fluid (example: earth's atmosphere), stability analysis (examples: convection, salt fingers in ocean), the magnetohydrodynamics equations, Alfven waves, flux conservation, flux freezing, magnetic pressure and tension, force-free fields, reconnection (with example: solar corona), angular momentum transport and the magneto-rotational instability (example: astrophysical discs). | |
Literature: | E.Landau & E.Lifshitz, "Fluid mechanics" Pergamon Press 1987 S.Shore, "Astrophysical hydrodynamics: an introduction", Wiley-VCH 2007 A. Choudhuri, "The physics of fluids and plasmas", Cambridge 1998 Lecture notes at http://www.astro.uni-bonn.de/~jonathan/misc/astroMHDnotes.pdf | |
Comments: | ||
6944 | Introduction to space and astrophysical plasmas Do 11-13, HS Astronomie Exercises: 2 hrs. by appointment |
|
Instructor(s): | C. Watts | |
For term nos.: | 5+ | |
Hours per week: | 3 | |
Prerequisites: | Advanced electrodynamics (Bachelor's level) | |
Contents: | Plasmas account for 99% of the ordinary matter in the universe. These ionized gases have temperatures ranging from several thousand to billion’s of degrees, and densities from 1 to 10^25 particles per cubic meter. This course surveys the many aspects of plasma physics with an emphasis on space and astrophysical manifestations and examples. The focus will be on understanding basic plasma phenomena – single particle motions, fluid description of a plasma, plasma waves and oscillations, instabilities, – but it will also cover topics in current space plasma research. Such topics include solar, ionospheric, stellar and interstellar plasmas. | |
Literature: | Recommended Texts: Introduction to Plasma Physics and Controlled Fusion, Chen Introduction to Space Physics, Kivelson Useful Texts: The Earth's Ionosphere: Plasma Physics and Electrodynamics, Kelley Plasma Physics for Astrophysics, Kulsrud Solar Astrophysics, Foukal | |
Comments: | ||
6945 | Accretion in astrophysics: theory and applications Details to be announced Exercises: 1 hr. by appointment |
|
Instructor(s): | P. Podsiadlowski | |
For term nos.: | From Term 4 (Bachelor and Master Program) | |
Hours per week: | 16 lectures plus 2 problem classes | |
Prerequisites: | Basic Astrophysics (recommended) | |
Contents: | This course provides an overview over accretion disk theory: thin disks (the alpha-disk model, disk structure and their appearance, the thermal disk instability, resonances), thick disks (includingradiation-pressure dominated disks), self-gravitating disks and their stability (including the Toomre criterion), relativistic disk accretion, optically thin advection-dominated flows, super-Eddington accretion, the source of disk viscosity (including the magneto-rotational instability), mass loss and jets from accretion disks. The course will emphasize a wide range of applications of accretion-disk theory, such as compact binaries, including black-hole binaries, ultraluminous X-ray sources, active galactic nuclei, proto-stellar systems, gamma-ray bursts. The course targets advanced undergraduate students and beginning graduate students and introduces them to current research problems. A basic background in astrophysics is recommended. | |
Literature: | Accretion Power in Astrophysics by J. Frank, A. King and D. Rainer, Cambridge University Press (3rd edition) plus selected review papers | |
Comments: | Schedule of Lectures: Dates: April 26, April 27 May 17, May 18 June 7, June 8 July 6 July 13 Time: 9 - 11 am Problem set classes: to be arranged | |
6931 | Astrophysics of galaxies Do 15-18, HS Astronomie Exercises: 2 hrs. in groups |
|
Instructor(s): | P. Kroupa, I. Georgiev | |
For term nos.: | 7. and 8. | |
Hours per week: | 3+2 | |
Prerequisites: | The following lectures ought to have been attended: Introduction to Astronomy I and II, Stars and Stellar Evolution, The Interstellar Medium | |
Contents: | The types of galaxies; foundations of stellar dynamics (Jeans equations, relaxation time); elliptical galaxies; disk galaxies; stellar populations in galaxies; formation of galaxies; dwarf galaxies (normal dwarfs, tidal dwarfs, ultra-compact dwarfs); galactic nuclei and their supermassive black holes; dark matter and alternatives to Newtonian gravity. | |
Literature: | Galactic dynamics by J.Binney and S.Tremaine (1987, Princeton University Press); Galactic Astronomy by J.Binney and M.Merrifield (1998, Princeton University Press); Galaxies in the Universe by L.Sparke and J.Gallagher (2000, Cambridge University Press) | |
Comments: | This course is worth 6 credit points. To achieve these attendance of the lectures is required and the exam needs to be passed. This is course astro821 in the Masters of Astrophysics programme. | |
6964 | Seminar on stars, stellar systems, and galaxies Fr 14-16, R 3.19 (oder HS 0.05) |
|
Instructor(s): | P. Kroupa, N. Langer | |
For term nos.: | 7. and higher | |
Hours per week: | 2 | |
Prerequisites: | Vordiplom or Bachelor in physics; The lecture "Stars and Stellar Evolution" (astro811); The lecture "Astrophysics of Galaxies" (astro821) | |
Contents: | The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics; current and preliminary research results by AIfA members and guests on the above topics. | |
Literature: | Latest astro-ph pre-prints, or recently published research papers. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester. The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research. This is course astro893 in the Masters of Astrophysics programme. | |
6966 | Seminar on theoretical dynamics Fr 9-11, R. 3.19 oder nach Vereinbarung |
|
Instructor(s): | P. Kroupa | |
For term nos.: | 5th and upwards | |
Hours per week: | 2 | |
Prerequisites: | Diploma or BSc in physics. | |
Contents: | Formation of planetary and stellar systems; Stellar populations in clusters and galaxies; Processes governing the evolution of stellar systems. | |
Literature: | Current research papers and own research. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester. Students and post-docs present the current state of their own research to a critical audience. Start date: after arrangement | |
6968 | Seminar on strong gravitational lensing and lens modelling Fr 17-19, R. 3.19 |
|
Instructor(s): | O. Wucknitz u.M. | |
For term nos.: | >= 5 | |
Hours per week: | 2 | |
Prerequisites: | basic understanding of astronomy and gravitational lenses in particular | |
Contents: | Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling | |
Literature: | ||
Comments: | The format of this seminar is a mixture of more formal presentations and informal discussions. | |
6970 | Seminar on galaxy clusters Do 15-17, R. 3.19 |
|
Instructor(s): | T. Reiprich, Y. Zhang | |
For term nos.: | 5 or higher | |
Hours per week: | 2 | |
Prerequisites: | Introduction to Astronomy. | |
Contents: | The students will report about up to date research work on galaxy clusters based on scientific papers. | |
Literature: | Will be provided. | |
Comments: | ||
6971 | Seminar on stellar evolution and hydrodynamics Do 13.30-15, R. 3.19 |
|
Instructor(s): | J. Braithwaite, N. Langer, S. Yoon | |
For term nos.: | >6 | |
Hours per week: | 1 | |
Prerequisites: | Bachelor in Physics (or equivalent) The lecture "Stars and Stellar Evolution" | |
Contents: | The latest work on stellar physics will be discussed. There is some emphasis on work currently being undertaken by researchers in Bonn, but in addition the latest results from elsewhere will be presented and discussed. | |
Literature: | Latest astro-ph pre-prints or other recent research papers. | |
Comments: | ||
6961 | Seminar on astronomy and astrophysics Mo 14.00-15.30, HS Astronomie |
|
Instructor(s): | P. Kroupa, F. Bertoldi, J. Kerp, U. Klein, M. Kramer, N. Langer, M. Massi, K. Menten, C. Porciani, T. Reiprich, P. Schneider, G. Weigelt, O. Wucknitz | |
For term nos.: | Vordiplom in physics | |
Hours per week: | 2 | |
Prerequisites: | Lectures: Introduction to Astronomy I and II. | |
Contents: | Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, quasars, cosmology). | |
Literature: | Current research papers. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminars of the other students and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester. The students will learn to hold a formal but pedagogical presentation about a subject of current international research. Start: 12.04. |