.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Sommersemester 2010

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

physics635 Laser Spectroscopy
Tu 8-10, Th 14-16, HS, IAP
Exercises: 1 hr in groups included
  Instructor(s): F. Vewinger
  For term nos.: ab 5. Semester
  Hours per week: 3+1
  Prerequisites: Optics, Atomic physics, Knowledge in Laser physics is helpful
  Contents: The lecture gives an introduction in the field of optical spectroscopy, covering fundamental concepts as well as applications of spectroscopy.
On the fundamental side, the lecture focusses on the physical principles of atomic and molecular spectra, as well as the principles of different spectroscopy techniques. Here both the fields of low and high resolution spectroscopy is discussed. Important research applications of spectroscopy lie in the determination of fundamental constants and their possible time variation.
The "real-world" applications discussed in the lecture include topics such as trace gas analysis, optical clocks and lasers in medicine.
  Literature: W. Demtröder; Laser spectroscopy (Springer)
S. Svanberg; Atomic and molecular spectroscopy: Basic aspects and practical applications (Springer 2001)
N. Bloembergen; High resolution laser spectroscopy (Springer 1976)
M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
R. Boyd; Nonlinear Optics (Academic Press 2003)
R. Menzel; Photonics (Springer, Berlin 2001)
  Comments: The lecture will be held in english unless everybody understands german.
physics633  High Energy Collider Physics
Tu 14-16, HS I, PI, We 8-10, HS, IAP
Exercises: 1 hr in groups included
  Instructor(s): E. von Törne, N. Wermes
  For term nos.: 7 or higher
  Hours per week: 3+1
  Prerequisites: Introductory Particle Physics + Quantum Mechanics
  Contents: This course is one of two independent and complementary advanced courses on experimental particle physics, deepening and widening the topics covered in the basic "Particle Physics" lecture. Here, the emphasis is on experimental tests of QCD, physics at hadron colliders, and heavy quark physics.

Topics are selected from the following areas: QCD, quarks, and gluons; hadrons and jets; ep scattering at HERA and proton structure; physics at pp colliders; physics at the B factories; top quark studies at the Tevatron and LHC; searching for the Higgs boson; looking beyond the Standard Model.
  Literature: Recommended textbooks include:

  • Ellis, Stirling, Webber: QCD and Collider Physics (Cambridge 2003)

  • Nachtmann: Elementary Particle Physics, Concepts and Phenomena (Springer 1998)

  • Seiden: Particle Physics, A Comprehensive Introduction (Addison-Wesley 2004)

Additional and more specific suggestions for further reading will be given during the course.
  Comments: Excercises will be held Thu 14-16 every other week (alternating with two-hour lectures).
physics634  Magnetism and Superconductivity
Th 12, Fr 8-10, HS, IAP
Exercises: 1 hr in groups
  Instructor(s): M. Fiebig
  For term nos.: from 6th Semester
  Hours per week: 3 + 1
  Prerequisites: Basic knowledge in solid state physics
  Contents: Magnetism and superconductivity are typical examples for collective phenomena, that is, phenomena that cannot be described within the single-electron picture of semiconductor physics. Here the standard approaches to magnetism and superconductivity are introduced with an emphasis on the experimental aspects of both phenomena. Links to the related theory lecture (physics638, J. Kroha) and to optical experiments are highlighted.
  Literature: 1) L. P. Lévy: Magnetism and superconductivity, Springer (2000)
2) P. Mohn: Magnetism in the Solid State - An Introduction, Springer (2005)
3) J. Crangle: Solid State Magnetism, Van Nostrand Reinhold (1991)
4) C. N. R. Rao, B. Raveau: Colossal Magnetoresistance […] of Manganese Oxides, World Scientific (2004)
5) J. F. Annett: Superconductivity, superfluids and condensates, Oxford University Press (2004)
6) A. Mourachkine: High-Temperature Superconductivity in Cuprates […], Springer/Kluwer (2002)
  • See also the module description which can be found here: "tiny.iap.uni-bonn.de/mhb/mhb.php?sem=8&stg=MSPHYSIK&modulteil=physics634"

  • The lecture may be held in German or English, depending on participants.
  • physics636 Advanced Theoretical Particle Physics
    Mo 12, Th 10-12, HS I, PI
    Exercises: 2 hrs in groups
      Instructor(s): S. Förste
      For term nos.: 7
      Hours per week: 3 + 2
      Prerequisites: Course in theoretical particle physics
      Contents: Introduction to supersymmetry and supergravity

    Supersymmetric extensions of the electroweak standard model

    Supersymmetric grand unification

    Theories of higher dimensional space time

    Unification in extra dimensions
      Literature: H. P. Nilles, Physics Reports 110C (1984) 1
    D. Bailin and A Love, IOP Publishing Ltd. 1994
    physics637  Advanced Theoretical Hadron Physics
    We 10-13, SR II, HISKP
    Exercises: 2 hrs in groups
      Instructor(s): A. Nogga, A. Wirzba
      For term nos.: 8
      Hours per week: 3+2
      Prerequisites: Theoretical Hadron Physics (physics616) or equivalent

    1. Generalities of Quantum Chromodynamics (QCD)

    2. QCD in the Limit of Light Quark Masses:

      • Chiral Symmetry, Spontaneous Symmetry Breaking and Goldstone Bosons

      • The Concept of Effective Field Theory

      • Chiral Perturbation Theory (ChPT) for Mesons

      • ChPT for Baryons in the Relativistic and in the Heavy Baryon Limit

    3. Various Topics:

      • Non-perturbative Methods in Effective Field Theories

      • Heavy Quark Masses and Heavy Quark Effective Field Theory


    • J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the standard model
      (Cambridge University Press, UK, 1992)

    • S. Scherer, Introduction to Chiral Perturbation Theory, in J.W. Negele and E.W. Vogt (eds.): Adv. Nucl. Phys. 27 (2003) 277-538, arXiv:hep-ph/0210398

    • A.V. Manohar, M.B. Wise, Heavy Quark Physics
      (Cambridge Univ. Press, UK, 2000)

    • M.E. Peskin,D.V. Schroeder, An Introduction to Quantum Field Theory
      (Addison Wesley, Reading, MA, 1995)

    physics753  Theoretical Particle Astrophysics
    Tu 16-18, Fr 12, HS I, PI
    Exercises: 2 hrs in groups
      Instructor(s): M. Drees
      For term nos.: 8 and higher
      Hours per week: 3+2
      Prerequisites: The Standard Model of particle physics. Some knowledge of cosmology and general relativity is helpful, but not essential.

    1. Introduction: History of the Universe

    2. Basics: FRW cosmology, and thermodynamics in an expanding Universe

    3. Big Bang Nucleosynthesis as laboratory for particle physics

    4. Making Dark Matter

    5. Making baryons (a.k.a. baryogenesis)

    6. Inflation: basic idea; quantum fluctuations as seed of structure; reheating; models

      Literature: Kolb and Turner, "The Early Universe" is still the best introduction to this field.
      Comments: Note the complementary lectures by Marek Kowalski (physics711), where many of the experimental techniques and astronomical observations relevant for this class will be described.

    Note also the joint (theory & experiment) seminar on astroparticle physics (physics658, by Drees and Kowalski).
    physics755 Quantum Field Theory
    Tu 14-16, SR II, HISKP, We 8, HS I, PI
    Exercises: 2 hrs in groups
      Dozent(en): A. Rusetsky, U. Meißner
      Fachsemester: 6
      Wochenstundenzahl: 3+2
      Erforderliche Vorkenntnisse: QM I , QM II

    1. Field quantization, symmetries

    2. Relativistic free field theories

    3. S-matrix and Lehmann-Symanzik-Zimmermann (LSZ) formalism

    4. Feynman graphs and cross sections

    5. Loops and renormalization

    6. Quantum Electrodynamics (QED) at one loop

      Literatur: M.E. Peskin and D.V. Schroeder, An Introduction to QFT, Westview Press

    S. Weinberg, The Quantum Theory of Fields, Vol. I,II, Cambridge Univ. Press

    J.D. Bjorken and S.D. Drell, Relativistische Quantenmechanik, Wissenschaftsverlag

    J.D. Bjorken and S.D. Drell, Relativistische Quantenfeldtheorie, Wissenschaftsverlag

    L.H. Ryder, Quantum Field Theory, Cambridge University Press

    S.J. Chang, Introduction to QFT, World Scientifc

    * P. Ramond, Field Theory : A Modern Primer, Westview Press

    * N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized
    Fields, John Wiley & Sons

    * C. Itzykson and J.-B. Zuber, Quantum Field Theorz, McGraw-Hill

      Bemerkungen: (*) stands for the additional literature
    physics773 Physics in Medicine II: Fundamentals of Medical Imaging
    Mo 9-11, We 12, SR I, HISKP
    Exercises: 1 hr in groups
      Dozent(en): K. Lehnertz
      Fachsemester: 5-8
      Wochenstundenzahl: 3+1
      Erforderliche Vorkenntnisse: Vordiplom/Bachelor
      Inhalt: Introduction to physical imaging methods and medical imaging

    (1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI
    (1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect
    (1b) applications: analysis of structure and function

    (2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging
    (2a) Basics of neuroelectromagnetic activity, source models
    (2b) instrumentation, detectors, SQUIDs
    (2c) signal analysis, source imaging, inverse problems, applications
      Literatur: 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl.
    2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
    3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
    4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
    5. W. Buckel: Supraleitung, VCH Weinheim, 1993
    6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998

    More literature will be offered

      Bemerkungen: Beginning: Mo, Apr 12; 9:00 ct
    physics639  Advanced Topics in High Energy Particle Physics
    Tu 12, Th 8-10, HS, IAP
    Exercises: 1 hr in groups
      Dozent(en): I. Brock
      Fachsemester: Master or PhD studies
      Wochenstundenzahl: 3
      Erforderliche Vorkenntnisse: physics611 Particle Physics
      Inhalt: These lectures complement the existing courses in particle physics
    covering the current data-taking particle physics experiments.
    Topics that will be discussed include neutrino masses and oscillations, CP violation in the K and B systems and luminosity measurement at colliders. Suggestions for further topics are welcome, e.g. dark matter searches.
      Literatur: Will be given during the lecture
      Bemerkungen: Course is suitable for master and PhD students
    physics711 Particle Astrophysics and Cosmology
    Mo 11, HS, IAP, Tu 8-10, SR I, HISKP
    Exercises: 1 hr in groups
      Instructor(s): M. Kowalski
      For term nos.: 7
      Hours per week: 3+1
      Contents: Overview of cosmological observations
    Determination of Primordial Nucleosynthese
    Measurement of Cosmic Microwave Background
    Dark matter constraints (direct and indirect detection as well as astrophysical constraints)
    Dark Energy constraints
    Neutrino masses as obtained from the cosmos and from the laboratory
    Neutrino mixing: observations and experiments
    Neutrinos from SN1987A and other core collapse Supernovae
    Cosmic ray observations
    Cosmic ray detection techniques
    Gamma ray observations & techniques
    High energy neutrino observations & techniques


    • Bergstroem & Goobar, Cosmology and Particle Astrophysics (2003)

    • Astroparticle Physics, Grupen, Springer (2005)

    • Particle Astrophysics, Perkins, Oxford (2003)

    • Weinberg, Cosmology, Oxford Press (2008) – detailed

    • Paecock, Cosmological Physics, Cambridge Press (1999) – detailed

    • Kolb & Turner, The early Universe, Westview Press (1994)– detailed

    • Schneider, Extragalactic Astronomy & Cosmology – introduction

    • Stanev, High Energy Cosmic Rays, Springer (2004) – detailed

      Comments: This course will be given in the context of
    physics 658 and physics 753. It is not required to attend the other courses to follow, but they
    complement this course.
    physics712 Advanced Electronics and Signal Processing
    We 14-16, Fr 12, HS, IAP
    Exercises: 1 hr in groups
      Instructor(s): M. Barbero, F. Hügging, H. Krüger
      For term nos.: ab 5.
      Hours per week: 3+1
      Prerequisites: Electronics Lab Course
      Contents: This is a lecture which we intend to establish within the new BSc/MSc and Graduate School systems for the instrumentation. The goal of the course is to provide the base knowledge for the experimental physicist in processing and reading out signals from experiments.

    Provisional content

    1. Electronics Devices

    2. Important Circuits (current mirrors, amplifiers, digital circuits ...)

    3. Readout Techniques (amplification, filtering, discrimination ...)

    4. Noise and Resolution

    5. Introduction to micro electronics and VLSI Design

    6. Radiation Effects

    7. Micro Pattern Detectors for different applications

    8. Tracking Techniques

    9. New developments in tracking detectors for HEP
      Literature: R. Müller, Grundlagen der Halbleiterelektronik Bd. 1+2
    S.M. Sze Semiconductor Devices
    S.M. Sze Semiconductor Devices (Physics and Technology)
    K.H. Rohe Elektronik für Physiker,
    Horowitz The Art of Electronics,
    - Hill Cambridge-University Press
    Gray Analog Integrated Circuits
    - Meyer
    physics716 Statistical Methods of Data Analysis
    Mo 9-11, HS, IAP
    Exercises: 1 hr in groups
      Instructor(s): K. Desch
      For term nos.: >4
      Hours per week: 2+1
      Prerequisites: Mathematics of first three semesters
      Contents: see eCampus
      Literature: R. Barlow, "Statistics, A Guide to the Use of Statistical Methods in the
    Physical Sciences", John Wiley Verlag
    G. Cowan, "Statistical Data Analysis", Oxford University Press
    S. Brandt, "Datenanalyse", BI, Wissenschaftsverlag
      Comments: Lecture will be given, depending on the audience,
    in German or in English
    physics739  Lecture on Advanced Topics in Photonics:
    "Ultrashort Laserpulses: Generation and Applications"
    Fr 10-12, HS, IAP
    Exercises: 1 hr in groups
      Instructor(s): F. Vewinger
      For term nos.: Master of Physics
      Hours per week: 2+1
      Prerequisites: Basic knowledge in optics, atomic physics and laser physics
      Contents: The lecture gives an overview on different techniques for the generation, amplification and the characterization of ultrashort pulses, i.e. optical pulses with a pulse length below 10 picoseconds. These pulses have gained much interest in recent years, as they allow the time-resolved observation of many different processes, e.g. the vibration of molecules, the dynamics within solids, the breaking and formation of chemical bonds, and very recently, the release of a single electron from an atom. Some of these applications will be discussed in the lecture.
    Another interesting feature of short pulses that will be discussed in the elcture is their enormous bandwidth, which e.g. for an visible pulse of a few femtoseconds length spans a few ten nanometers. This lead to the development of optical frequency combs, which allows the precise measurement of (absolute) frequencies by bridging the gap from the cesium clock transition to the visible/UV regime. The broad bandwidth also allows for the shaping of the pulses, which has become a widely used tool in physical chemistry.

      Literature: Claude Rulliere, Femtosecond laser pulses: principles and experiments; Springer Berlin 1998;
    P. Hannaford, Femtosecond laser spectroscopy; Springer New York 2005
    Jean-Claude Diels and Wolfgang Rudolph; Ultrashort laser pulse phenomena fundamentals, techniques, and applications on a femtosecond time scale Academic Press, San Diego 1996
      Comments: The lecture is held in english unless everybody speaks german
    physics751  Group Theory
    We 14-16, Fr 9, HS I, PI
    Exercises: 2 hrs in groups
      Dozent(en): S. Förste, C. Lüdeling
      Fachsemester: 1st Term (Master in Physics)
      Wochenstundenzahl: 3 + 2
      Erforderliche Vorkenntnisse: some quantum mechanics, basic knowledge of linear algebra

    1. Basics of groups

    2. Representations

    3. Discrete groups

    4. Compact Lie groups

    5. Lorentz group


    • H. Georgi, "Lie algebras in particle physics"

    • H. F.Jones, "Groups, representations and physics"

    • M. Hamermesh, "Group theory and its application to physical problems"

    • R. Cahn, "Semi-simple Lie Algebras And Their Representations"

    physics752 Superstring Theory
    Tu 12, Fr 14-16, HS I, PI
    Exercises: 2 hrs in groups
      Dozent(en): A. Klemm
      Fachsemester: 8
      Wochenstundenzahl: 3
      Erforderliche Vorkenntnisse: Quantum Field Theory,
    Theoretical Particle Physics,
    General Relativity
      Inhalt: Conformal field theory,
    Bosonic string theory,
    Compactification of extra dimensions,
    Superstring theory,
    Heterotic strings,
    Dualities, D-branes, M-theory
      Literatur: D. Lust, S. Theisen, Lectures on String Theory (Springer, New York 1989)
    M. Green, J. Schwarz, E. Witten, Superstring Theory 1+2 (Cambridge Univiversity Press 2003)
    J. Polchinski, String Theory 1+2 (Cambridge Univiversity Press, 2005)
      Bemerkungen: Lecture will be held in English or German at the discretion of the audience.
    The first lecture will take place on Thursday, April 5th at 2 pm.
    physics774  Electronics for Physicists
    Tu 10-12, Th 12, HS, HISKP
    Exercises: 1 hr in groups
      Dozent(en): P.-D. Eversheim
      Fachsemester: 5
      Wochenstundenzahl: 3+1
      Erforderliche Vorkenntnisse:  
      Inhalt: Zu den "klassischen" Fähigkeiten eines Experimentalphysikers gehört es, gegebenenfalls die Experimentiergeräte selbst zu bauen, die er benötigt. Mit Blick auf die wachsende elektronisch gestützte Ansteuerung und Auslese der Experimente nehmen Kenntnisse in Elektronik mittlerweile die Rolle einer Schlüsselfertigkeit für einen Experimentalphysiker ein.
    Das Ziel dieser Vorlesung ist es die Studierenden insbesondere anhand beispielgebender Experimente zu befähigen, Lösungskonzepte zu vorgegebenen Problemstellungen zu erarbeiten. Ein Schwerpunkt der Vorlesung besteht darin zu zeigen, dass viele Lösungen bzw. Lösungskonzepte aus anderen Gebieten der Physik bekannt sind (Quantenmechanik, Optik, Mechanik, Akustik, . . .).
    Am Ende der Vorlesung sollte der Studierende:
    i) einen Überblick haben über die gängigsten Bauelemente in der Elektronik.
    ii) ein Bewußtsein besitzen für Probleme im Umgang mit elektronischen Bauelementen und Baugruppen.
    iii) Konzepte verstehen, die eine Analyse und Synthese des dynamischen Verhaltens von Systemen gestatten.

    One of the "classic" abilities of an experimentalist is to build himself the instruments he needs, if necessary. In view of the growing electronics aided control and acquisition of experiments the knowledge of electronics becomes meanwhile a key skill of an experimentalist.
    The intention of this lecture is to enable students by means of exemplary experiments to work out solutions for given problems. A focus of this lecture is to show that many of these solutions are known from other fields of physics (quantum mechanics, optics, mechanics, acoustics, . . .).
    At the end of this lecture, the student should:
    i) have an overview over the most common parts in electronics.
    ii) be concious about the problems of handling electronic parts and assemblies.
    iii) understand the concepts that allow an analysis and synthesis of the dynamic behavior of systems.


    1. The Art of Electronics by Paul Horowitz and Winfield Hill,
      Cambridge University Press
      - ”The practitioners bible” -

    2. Elektronik für Physiker by K.-H. Rohe,
      Teubner Studienbücher
      - A short review in analogue electronics -

    3. Laplace Transformation by Murray R. Spiegel,
      McGraw-Hill Book Company
      - A book you really can learn how to use and apply Laplace Transformations -

    4. Entwurf analoger und digitaler Filter by Mildenberger,
      - Applications of Laplace Transformations in analogue electronics -

    5. Aktive Filter by Lutz v. Wangenheim,
      - Comprehensive book on OP-Amp applications using the Laplace approach -

    6. Mikrowellen by A.J.Baden Fuller,
      - The classic book on RF and microwaves basics -

    7. Physikalische Grundlagen der Hochfrequenztechnik by Meyer / Pottel
      - An interesting approach to explain RF behaviour by acoustic analogies -

    physics775 Nuclear Reactor Physics
    Th 14-16, SR I, HISKP
      Instructor(s): A. Gillitzer, R. Jahn
      For term nos.: 6-7
      Hours per week: 2
      Prerequisites: Basic understanding of nuclear physics
      Contents: - physics of nuclear fission
    - basic principles of nuclear reactors:
    - neutron moderation, absorption, diffusion, etc
    - criticality
    - different reactor types
    - radioactive waste management
    - safety considerations, accidents
    - natural reactor
    - research reactors
    - future reactor concepts
    - fusion reactors
    - transmutation

    An excursion to a (terminated) nuclear power plant is planned
      Literature: H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture)
    M. Borlein: Kerntechnik, Vogel (2009)
    W. M. Stacey: Nuclear Reactor Physics, Wiley & Sons (2007)
    Semiconductor Physics and Nanostructures
    Tu 12-14, Konferenzraum II, Zi. 166, PI
      Instructor(s): R. Wördenweber (Jülich)
      For term nos.: Master of Physics and Diploma/PhD-students
      Hours per week: 2
      Contents: Semiconducting material and (nano-)structures represent the
    backbone of modern electronics and information technology. At
    the same time they are fundamental to the research of problems
    of modern solid state physics. This lecture will provide an
    introduction to semiconductor physics and its application. First, a
    fundamental introduction will be given including various aspects
    of semiconducting material, e.g., crystalline structure, band
    structure, electronic and optical properties. Second,
    heterostructures, junction and interfaces will be discussed
    leading to basic device concepts. Finally, aspects of modern
    semiconductor technology including thin film deposition and
    nanotechnology will be addressed.
      Literature: Will be given in the lecture
      Comments: The lecture will be broadcasted from cologne. Start is at 12st, not 12ct.
    6823 Stochastic Interacting Particle Systems
    Do 16-18, SR II, HISKP
      Dozent(en): G. Schütz
      Fachsemester: ab 5.
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Quantenmechanik
      Inhalt: Random Walk, Exclusion Processes, Large-Scale Dynamics, Phase Transitions
      Literatur: G.M. Schütz, Exactly solvable models for many-body systems far from equilibrium},
    in: Phase Transitions and Critical Phenomena} vol 19, ed. C. Domb and J.
    Lebowitz (London: Academic, 2001)

    H. Spohn, Large Scale dynamics of interacting particle systems},
    (Springer, Berlin, 1991)

    Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1999)
    6824 Introduction to supersymmetry
    Blockvorlesung: 31.5.2010 - 2.6.2010
      Dozent(en): E. Kraus
      Fachsemester: ab 6. Semester
      Wochenstundenzahl: Blockvorlesung
      Erforderliche Vorkenntnisse:

    • Relativistische Quantenmechanik,

    • Grundlagen der Quantenfeldtheorie,

    • Lorentzgruppe


    • N =1 Supersymmetriealgebra

    • Superfelder

    • Wess-Zumino-Modell

    • Supersymmetrische QED

    • Wess-Zumino-Eichung

    • Ausblick zum MSSM


    1. J. Wess and J. Bagger, Supersymmetry and Supergravity , World Scientific, SIngapore, 1987;

    2. H.P. Nilles, Phys. Rep. 110 (1984);

    3. M. Sohnius, Introducing Supersymmetry , Phys. Rep. 128 (1985) 39;

    4. M. Kaku, Quantum field Theory, A modern introduction , Oxford University Press, Oxford 1994.

    physics652 Seminar on Recent Topics in Nanophotonics and Nonlinear Optics
    Tu 14-16, HS, IAP
      Instructor(s): S. Linden, D. Haertle, T. Lottermoser
      For term nos.: 5. and higher
      Hours per week: 2
      Prerequisites: Physics courses of the 1.-4. semesters
      Contents: Die Nanophotonik beschäftigt sich mit der Wechselwirkung von Licht mit Materialien, die auf einer (Sub-)Wellenlängen-Skala strukturiert sind. Durch geeignetes Design und durch den Einsatz moderner Fabrikationsmethoden lassen sich Nanostrukturen erstellen, die völlig neuartige optische Eigenschaften besitzen. Zum Beispiel kann ein Photonischer Kristall (eine periodische dielektrische Struktur) wie ein perfekter Spiegel wirken obwohl die zugrunde liegenden dielektrischen Materialien transparent sind. Andere Beispiele sind lokalisierte „Hot Spots“ in plasmonischen Materialien oder photonische Metamaterialien die einen negativen Brechungsindex aufweisen.
    Die nichtlineare Optik beschäftigt sich mit der Wechselwirkung von Licht und Materie bei sehr hohen Lichtintensitäten. Über einen nichtlinear optischen Effekt kann z. B. die Wellenlänge von Laserlicht verändert werden. Dies geschieht besonders effizient mit ultrakurzen Laserpulsen (weil die Spitzenintensität des Lichts sehr hoch ist) und in Kristallen, die keine Inversionssymmetrie besitzen.
    Das Seminar behandelt verschiedene theoretische und experimentelle Aspekte nanophotonischer und nichtlinear optischer Materialien und gibt einen Einblick in den derzeitigen Stand der Forschung.
    Einführungsveranstaltung: Dienstag, 20.04.2010, 14:15 Uhr, Hörsaal des IAP.
    1. Photonische Kristalle (S. Linden)
    2. Photonische Kristallfasern (S. Linden)
    3. Plasmonik (S. Linden)
    4. Metamaterialien (S. Linden)
    5. Ultraschnelle Optik in magnetischen materialien (T. Lottermoser)
    6. Multiferroika (T. Lottermoser)
    7. Nichtlineare Optik mit magnetischen und ferrolelektrischen Domänen (T. Lottermoser)
    8. Goldmine in Wissenschaft und Technik: Terahertz-Wellen (D. Haertle)
    9. Licht im Käfig: Flüstergaleriemoden (D. Haertle)
    10. Bildschirmanzeige ohne Strom: Elektronisches Papier (D. Haertle)


    Nanophotonics deals with the interaction of light with materials which are structured on a (sub-) wavelength scale. Proper design and fabrication of nanostructures can result in optical properties which are not available from the corresponding bulk materials. For instance, a Photonic Crystal, i.e., a periodic dielectric nanostructure, can act as perfect mirror even though the Photonic Crystal’s constituent materials are perfectly transparent. Other examples are localized “hot spots” in plasmonic materials or photonic metamaterials which exhibit a negative index of refraction.
    Nonlinear optics deals with the interaction of light and matter at very large light intensities. For example, a nonlinear optical effect can change the frequency of laser light. This works very efficiently with ultrashort laser pulses, since the peak intensity of these pulses is so large, and with a special category of crystals, which do not possess the inversion symmetry.
    The seminar covers different theoretical and experimental aspects of nanophotonic and nonlinear optical materials and gives an overview on the current status of these fascinating fields of research
    Kick-off meeting: Tuesday, 20.04.2010, 2:15 pm, lecture hall of the IAP.
    1. Photonic Crystals (S. Linden)
    2. Photonic crystal fibers (S. Linden)
    3. Plasmonics (S. Linden)
    4. Metamaterials (S. Linden)
    5. Ultrafast optics on magnetic materials (T. Lottermoser)
    6. Multiferroics (T. Lottermoser)
    7. Nonlinear optics on magnetic and ferroelectric domains (T. Lottermoser)
    8. Terahertz waves: gold mine for science and technics (D. Haertle)
    9. Trapped light: Whispering-gallery modes (D. Haertle)
    10. Image on display without current: electronic paper (D. Haertle)
      Comments: Information and registration:
    physics656 Seminar Medical Physics: Physical Fundamentals of Medical Imaging
    Mo 14-16, SR I, HISKP
      Dozent(en): K. Lehnertz, K. Maier
      Fachsemester: 5-8
      Wochenstundenzahl: 2+1
      Erforderliche Vorkenntnisse: Vordiplom/Bachelor
      Inhalt: Physical Imaging Methods and Medical Imaging of Brain Functions
    Emission Computer Tomography (PET)
    - basics
    - tracer imaging
    - functional imaging with PET
    Magnetic Resonance Imaging (MRI)
    - basics
    - functional MRI
    - diffusion tensor imaging
    - tracer imaging
    Biological Signals: Bioelectricity, Biomagnetism
    - basics
    - recordings (EEG/MEG)
    - SQUIDs
    - source models
    - inverse problems
      Literatur: 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
    2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik,
    Siemens, 3. Aufl.
    3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin,
    4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
    5. Ed. S. Webb: The Physics of Medical Imaging, Adam
      Bemerkungen: Time: Mo 14 - 16 and one lecture to be arranged
    Beginning: Mo Apr. 12
    physics657  Seminar on Environmental Physics
    Th 13:30-15, HS 118, AVZ I
      Dozent(en): B. Diekmann, T. Reichelt
      Fachsemester: ab 5
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Vordiplom bzw. Bachelorabschluß, Teilnahme an der Vorlseung 'Umweltphysik'
    im Wintersemester 2009/10 wäre wünschenswert, ebenso Vorkenntnisse in Thermodynamik.
      Inhalt: Der Themenkatalog der erwähnten Vorlesung wird nachstehend wiedergegeben:
    zu diesen Themen werden Seminarvorträge nach Vorschlag der Dozenten oder auch
    der Studierenden vergeben-- die genaue Festlegung folgt am 11.2 in der Vorlesung um 13.30 im AVZ 118 und wird später an dieser Stelle veröffentlicht !

    Do 15.10 Einfuehrung Wechselbeziehung Mensch Arbeit Energie Umwelt BD

    Do 22.10 Exkursion Bad Honnef AKE Herbsttagung: Desertron BD

    Do 29.1 relevante Messmethoden Fehlerbestimmungen, ggf Versuche BD

    Do 5.11 Umwelteinfluesse der Nutzung von Energie BD
    Do 12.11 Umweltrelevanz der Nutzung von Energie: fossile Träger BD
    Do 19.11 Umweltrelevanz der Nutzung von Energie: Nukleare.. (Radioaktivität) TR (!)

    Do 26.11 Umweltrelevanz der Nutzung von Energie: Erneuerbare BD
    Do 03.12 Strahlungspyhsikalische Phänomene mit Umweltrelevanz:
    Treibhauseffekt BD

    Do 10.12 Atmoshpärenchemische Phänomene mit Umweltrelevanz
    Ozon(löcher) BD
    Do 17.12 & 7.1 Umweltrelevanz der Nutzung von Energie: Nukleare.. (Bukl.Reakt....)
    Do 14.1 Physik der Sinne : Nase Rosenthal,Lodomez, Leppert, Haas
    Do 21.1 Physik der Sinne : Auge ( Funktion ..) ANdreas Bliersbach
    Do 28.1 Physik der Sinne : Gehör ( Schall und Lärm) BD
    Do 4.2 Elekromagnetische Wellen und E_Smog (BD)
    (Seminar), TR
    Do 11.2 Resümmee & Vorbesprechnung Seminar SS10
    Abschlußprüfungen für Studenten des Diplomstudienganges BD/TR

      Literatur: Diekmann,B., Heinloth,K.: Physikalische Grundlagen der Energieerzeugung, Teubner 1997

    Heinloth, K., Die Energiefrage, Vieweg 1999

    Thorndyke,W., Energy and Environment, Addison Wesley 1976

    Schönwiese,C.D., Diekmann,B., Der Treibhauseffekt , DVA 1986

    Boeker,E.,von Grondelle,R., Physik und Umwelt,Vieweg, 1997

    swie die in ecampus in den jeweiligen Vorlesungen veröffentlichten Lizeraturverweise

      Bemerkungen: Das Semniar wird als 2 stündige Veranstaltung angeboten. Für Diplomstudenten sind regelmäßige Teilnahme und Übernahme eines Seminarvortrages zur Erlangung eines SANG Scheines verbindlich.
    Masterstudenten erhalten x creditpoints für regelmäßige und Übernahme eines Seminarvortrages
    physics658  Seminar on Astroparticle Physics
    Fr 10-12, SR II, HISKP
      Instructor(s): M. Drees, M. Kowalski, E. von Törne, S. Boeser, K. Paech
      For term nos.: 8 and higher
      Hours per week: 2
      Prerequisites: Basic knowledge of the Standard Model of Particle Physics, and of Big Bang Cosmology
      Contents: This is a joint experimental and theoretical seminar. We hope to have approximately equal number of talks of each kind. Possible topics for talks are:

    1. Dark Matter

      • Observational evidence for Dark Matter

      • Production of Dark Matter in the early Universe

      • Direct and indirect detection of Dark Matter particles

    2. Big Bang Nucleosynthesis

      • Determination of the primordial abundances of the light elements

      • Theoretical predictions

    3. Cosmic Microwave Background

      • Theory

      • Observation and determination of cosmological parameters

    4. Neutrino physics

      • Determining neutrino masses in cosmology: theory and observation

      • Neutrino oscillations: theory and experimental results

      • Neutrinos and Supernova 1987a: theory and observation

    5. Gamma Ray Bursts

      • Observations

      • Constraints on the violation of Lorentz invariance

    6. Primordial black holes

      Literature: Literature for the talks will be provided during the seminar.
      Comments: Note that there are also lectures on astroparticle physics this term:
    physics711, Particle Astrophysics and Cosmology, on experimental and observational aspects, by Kowalski; and
    physics753, Theoretical Particle Astrophysics, by Drees.
    physics659 BCGS Seminar on experiments at LHC and FAIR
    Mo 16-18, Alternate Meetings in Bonn and Cologne
    in Bonn: Raum 300 PI,
    in Cologne: Institut für Kernphysik, Bibliothek.
    First meeting: 19.04 in Cologne
      Instructor(s): I. Brock, K. Desch, E. von Törne, N. Wermes, J. Jolie (Cologne), A. Blazhev (Cologne)
      For term nos.: 6 or higher
      Hours per week: 2
      Prerequisites: introductory course on nuclear or particle physics
      Contents: Seminar on experiments at the new Large Hadron Collider (LHC, Geneva) and the Facility for Antiproton and Ion Research (FAIR, Darmstadt).
      Comments: Monday 16h - 18h Start: April 19, 2010 in Köln, 16.00
    Bonn Physikalisches Institut, Raum 300, 16.15
    Köln Institut für Kernphysik, Bibliothek, 16.00
    The seminar is open to all physics students of Bonn and Cologne
    6842 Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E)
    pr, ganztägig, Dauer n. Vereinb., PI
      Dozent(en): H. Dutz, S. Goertz u.M.
      Fachsemester: 7 oder höher
      Wochenstundenzahl: 4 Wochen ganztägig
      Erforderliche Vorkenntnisse: Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik
      Inhalt: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.
    Thema: Forschung und Entwicklung rund ums Polarisierte Target

    Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten.
      Literatur: wird gestellt
      Bemerkungen: Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten.

    Depending on the students' preferences the course is given in German or in English.
    6845 Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E)
    pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
      Instructor(s): F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M.
      For term nos.: 7 oder höher
      Hours per week: 4 Wochen ganztägig
      Prerequisites: Lectures on detectors and electronics
      Contents: Research Internship:

    Students shall receive an overview into the activities of a research group:

    here: Development of Semiconductor Detectors and Micro-Electronics
      Literature: will be handed out
      Comments: early aplication necessary

    6846 Praktikum in der Arbeitsgruppe: Proton-Proton-Kollisionen am LHC / Research Internship: Proton-Proton-Collisions at LHC (D/E)
    pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
      Instructor(s): M. Cristinziani, J. Kroseberg, E. von Törne, N. Wermes u.M.
      For term nos.: 7 oder höher
      Hours per week: 4 Wochen ganztägig
      Prerequisites: Lectures on Particle Physics
      Contents: Within 4 weeks students receive an overview/insight of the research carried out in our research group.

    Topics: Analyses of data taken with teh ATLAS Experiment at the LHC

    The exact schedule depends on the number of applicants appearing at the same time.
      Literature: wird gestellt
      Comments: Early application is required
    Contacts: E. von Törne, M. Cristinziani, J. Kroseberg, N. Wermes
    6847 Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group:
    Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E)
    pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., Applications to brock@physik.uni-bonn.de, PI
      Dozent(en): I. Brock u.M.
      Fachsemester: 7 and above
      Wochenstundenzahl: Full time, 3-4 weeks. Applications to brock@physik.uni-bonn.de
      Erforderliche Vorkenntnisse: Introductory particle physics course
      Inhalt: Introduction to the current research activities of the group, introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group.
      Literatur: Working materials will be provided.
      Bemerkungen: The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques.

    Depending on the students' preferences the course will be given in German or in English.
    6848 Praktikum in der Arbeitsgruppe: Detektorentwicklung und Teilchenphysik an einem Elektron-Positron-Linearcollider / Laboratory in the Research Group: Detector Development and Particle Physics at an Electron-Positron Linear Collider (D/E)
    pr, ganztägig, ca. 4 Wochen n. Vereinb., vorzugsweise in den Semesterferien, PI
      Dozent(en): K. Desch u.M.
      Fachsemester: 7 und höher
      Wochenstundenzahl: 4 Wochen ganztägig
      Erforderliche Vorkenntnisse: Vorlesungen über Teilchenphysik
      Inhalt: In einem 4 wöchigen Praktikum wird den Studierenden die Möglichkeit gegeben

    anhand eines eigen kleinen Projektes einen Einblick in die Arbeitsweise

    der experimentellen Hochenergiephysik zu bekommen.

    Themen werden bei der Vorbesprechung vereinbart.

    Möglichkeiten (Beispiele):

    - Simluation von Prozessen am International Linear Collider

    - Messungen an einer Zeitprojektionskammer
      Literatur: wird ausgegeben
      Bemerkungen: Eine frühe Anmeldung ist erwünscht bei Prof. Desch, Dr. P. Wienemann oder Dr.
    J. Kaminski
    6849 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
    pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
      Dozent(en): K. Lehnertz u.M.
      Fachsemester: 6. semester or higher
      Wochenstundenzahl: Block course, 4 weeks
      Erforderliche Vorkenntnisse: basics of programming language (e.g. C, C++, Pascal)
      Inhalt: This laboratory course provides insight into the current research activities of the Neurophysics group.

    Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
      Literatur: Working materials will be provided.
      Bemerkungen: Contact:

    Prof. Dr. K. Lehnertz

    email: klaus.lehnertz@ukb.uni-bonn.de
    6853 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung laseroptischer Experimente aus den Gebieten Kristallphysik, Nichtlineare Optik, Wechselwirkung magnetischer und elektrischer Ordnung mit Licht, Dynamik von Magnetisierungsprozessen, Messablaufsteuerung eines Laserlabors / Laboratory internship on laseroptical experiments concerning crystal physics, nonlinear optics, interaction of magnetically or electrically ordered matter with light, magnetization dynamics, data acquisition control of a laser laboratory (D/E)
    pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, HISKP
      Dozent(en): M. Fiebig
      Fachsemester: ab 7.
      Wochenstundenzahl: ganztägig, ca. 4 Wochen
      Erforderliche Vorkenntnisse: Vorlesungs-Grundkenntnisse in Festkörperphysik und Laseroptik / basic lecture knowledge in condensed-matter physics and laser optics
      Inhalt: Im Rahmen der Mitarbeit an einem laufenden Experiment inklusive der eigenständigen Bearbeitung kleinerer Teilaufgaben soll die Möglichkeit gegeben werden, sich mit dem Umfeld eines Laserlabors und den Abläufen des "realen Experimentieralltags" vertraut zu machen. / Getting familiarized with the environment of a laser lab and the daily routine of experimental work by participation in ongoing experiments.
      Literatur: wird auf Anfrage bereitgestellt / provided on request
      Bemerkungen: ---
    6854 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E)
    pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
      Dozent(en): K. Buse u.M.
      Fachsemester: ab 5.
      Wochenstundenzahl: Block
      Erforderliche Vorkenntnisse: Vordiplom oder äquivalente Leistungen im Bachelor-Studium
      Inhalt: Die Arbeitsgruppe ist auf drei Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, ferroelektrische Domänen sowie Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden.

    The research group is active in the following three areas: dielectric nano crystals and their optical properties, ferroelectric domains, as well as nonlinear optics – in particular optical parametrical oscillators and terahertz generation. We offer internships related to these topics.

      Literatur: wird zur Verfügung gestellt
      Bemerkungen: keine
    6856 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
    pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
      Dozent(en): M. Weitz u.M.
      Fachsemester: ab 5.
      Wochenstundenzahl: 2-6 Wochen (ganztägig) nach Vereinbarung
      Erforderliche Vorkenntnisse: Vordiplom, Quantenmechanik-Vorlesung
      Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
      Literatur: wird gestellt
      Bemerkungen: Homepage der Arbeitsgruppe:

    6857  Bastelseminar Optik und Atomphysik
    pr, Mo 9-11 oder 11-13, IAP
    Vorbesprechung: siehe Aushang
      Dozent(en): M. Weitz u.M.
      Fachsemester: ab 7.
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
      Inhalt: Diodenlaser
    Optische Resonatoren
    Akustooptische Modulatoren
    und vieles mehr
      Literatur: wird gestellt
      Bemerkungen: Vorbesprechung: Montag, 19. April 2010 um 13:15 Uhr im IAP-Hörsaal

    6858 Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin
    pr, Kliniken Venusberg
    (Teilnahme am Seminar "Medizinische Physik" erforderlich)
      Dozent(en): K. Lehnertz, C. Berg, P. David, K. Reichmann, F. Träber, P. Trautner
      Fachsemester: 5-8
      Wochenstundenzahl: 2+1
      Erforderliche Vorkenntnisse: Teilnahme am Seminar "Medizinische Physik: Physikalische Grundlagen der medizinischen Bildgebung"
      Inhalt: Vertiefung der Seminarthemen;
    Praktische Beispiele der Bildgebung in der pränatalen Diagnostik, Nuklearmedizin, Radiologie und Neurowissenschaften
      Bemerkungen: Termine werden im Laufe des Semester bekannt gegeben
    6859  Engineering and characterization of nanostructures by photons, ion beam and nuclear methods
    Blockkurs Mai 2010
      Dozent(en): R. Vianden und Dozenten des ERASMUS Intensive Programme
      Fachsemester: 7+
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Basic knowledge in nuclear and solid state physics
      Inhalt: This ERASMUS Intensive programme offers a unique opportunity for physicists to work together in a multinational group on methods used in the fascinating world of nanoscale science. The continuous shrinking of device dimensions introduces fundamental challenges with respect to the synthesis, characterization and physical properties of low-dimensional systems. This Erasmus Intensive Programme covers essential and advanced techniques applied to nanostructures. The topics which are discussed include hyperfine interactions, ion-solid interactions, Rutherford backscattering/Channeling, neutron diffraction/reflectivity, muon spin rotation, nuclear resonant scattering of synchrotron radiation, nuclear reaction analysis...

    The level of the courses is such that they are accessible for Master students, but still remain challenging for Post-docs. Typically, two lectures are scheduled in the morning, with tutorials in the afternoon which allow a more thorough discussion and problem solving. These tutorials help the participants to understand the theoretical concepts and apply them to practical situations. A visit to the Ion- and Molecular Beam Laboratory of the Nuclear Solid State Physics Group of the Katholieke Universiteit Leuven will demonstrate the use of several of the techniques discussed in real-time.
      Literatur: Schatz/Weidinger "Nukleare Festköperphysik"
    6932 Einführung in die Radioastronomie
    Di 13.00-14.30, HS Astronomie
    Übungen, 1-stündig, n. Vereinbarung
      Dozent(en): J. Kerp, M. Kramer
      Fachsemester: 2-4
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Physik I, II, III (IV)
    Astronomie I und II
      Inhalt: Einführung in die Radiastronomie:

    • Radioastronomie als Technik

    • Instrumente (vom Einzelteleskop zum Square Kilometer Array)

    • Messgrössen (vom Wellenzug zum Spektrum)

    • Technik der Radioastronomie (Empfänger, Spektrometer etc.)

    • Strahlungsprozesse (Atome, Ionen und relativistische Teilchen)

    • Fundamentale Physik in starken Gravitationsfeldern (Neutronensterne und Pulsare)

    • Interstellare Materie (Sternenstehung, Dynamik von Galaxien, Aufbau der Milchstrasse)

    • Erforschung der Dark Ages (Wasserstoff im frühen Universum)

    • Kosmologie mit Radioastronomie (kosmischer Mikrowellenhintergrund)

      Literatur: Skript zur Vorlesung
      Bemerkungen: Die Vorlesung wendet sich an Studierende des Bachelor Studiengangs Physik. Sie wird nur in deutscher Sprache angeboten. Anhand von Beispielen werden auch Detailkenntnisse vermittelt die durch das exemplarische Lernen leicht verständlich sein werden. Ziel ist es, einen guten Überblick über die Radioastronomie zu vermittel, der nützlich und sinnvoll für erfolgreiche Bearbeitung von Bachlorarbeiten in diesem Forschungsfeld ist.

    Die erste Vorlesung findet am 12.04.2010 statt.

    Geplant ist ein Beobachtungspraktikum im Juli 2010 am Radioteleskop Stockert (Eifel). Dort werden alle Beobachtungstechniken in der Praxis erprobt.
    Übungen ergänzen alle zwei Wochen die Lehrinhalte.
    6933 Physics of the interstellar medium
    Di 16-19, HS, Astronomie
    Exercises: 1 hr. by appointment
      Instructor(s): F. Bertoldi, K.K. Knudsen
      For term nos.: 7+
      Hours per week: 3
      Prerequisites: Electrodynamics
    Atomic physics
      Contents: · Historic overview
    · Continuum radiation
    · Dispersion and polarisation
    · Processes at the atomic level
    · Line radiation (emission and absorption) and gas parameters to be derived
    · Neutral gas
    · Ionised gas
    · Hot gas
    · Dust: quantity, formation, destruction, observability
    · Molecules: quantity, formation, destruction, observability
    · Energy balance of the ISM
    · Structure and evolution of the interstellar medium
      Literature: James Lequeux
    The Interstellar Medium
    Astronomy and Astrophysics Library, 2004

    A.G.G.M. Tielens
    The Physics and Chemistry of the Interstellar Medium
    Cambridge, 2006

    Donald E. Osterbrock
    Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
    Palgrave Macmillan, 2005 (2nd edition)
      Comments: In English. The 3 hours of lecture will likely be split, with a 1-hour lecure on a different day to be agreed
    6934  X-ray astronomy
    Fr 13-15, HS Astronomie
    Exercises: 1 hr. by appointment
      Instructor(s): T. Reiprich
      For term nos.: 5 or higher
      Hours per week: 2
      Prerequisites: Introductory courses on astronomy, atomic physics, and hydrodynamics would be useful.
      Contents: X-rays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of modern X-ray observations of all major X-ray sources, e.g., remnants of exploded stars, the vicinities of lightweight and supermassive black holes, and collisions of galaxy clusters -- the most massive objects in the Universe. The physical properties of X-ray radiation as well as current and future space-based instruments used to carry out such observations will be described. In the accompanying lab sessions, the participants will learn how to download, reduce, and analyze recent X-ray data from a satellite observatory.
      Literature: A bound script of the lecture notes will be provided.
      Comments: Due to demand for live video broadcast of the lecture, the room will likely change (check course web page).
    6935  Observational cosmology
    Mi 11-13, MPIfR, HS 0.01
    Exercises: 1 hr. by appointment
      Instructor(s): C. Porciani, K. Basu
      For term nos.: 4 and up
      Hours per week: 2+1
      Prerequisites: Basic astronomy and cosmology.
      Contents: This class provides an overview of current and future experimental efforts aimed at improving our understanding of the universe, including the nature of dark matter and dark energy. After briefly reviewing the current standard cosmological model, we will focus on the motivations, techniques and aims of the leading experiments in the field. Particular attention will be devoted to:
    - Cosmological parameter estimation: Bayesian methods and Markov Chain Monte Carlo simulations
    - Experimental design: the Fisher matrix
    - Observation and analysis of the CMB
    - CMB polarization
    - Big Bang Nucleosynthesis
    - Optical galaxy redshift surveys and baryonic acoustic oscillations
    - Dark energy probes, photometric galaxy surveys
    - Cosmology with SN Ia
    - Cosmology with galaxy clusters, multi-wavelength observations
    - The Sunyaev-Zel'dovich (SZ) effect
    - Modeling galaxy clusters with SZ and X-ray
    - Reionization of the universe
    - Sub-millimeter galaxies
    - Inflation / Gravitational waves
      Literature: Some lecture notes and references to review articles will be given in the classroom. No textbook will be followed.
    For a general background, students might find useful:

    • "Modern Cosmology" (Dodelson)

    • "Cosmological Physics" (Peacock)

    • "Galaxy Formation" (Longair)

      Comments: For for M.Sc. credit, the student will take exercise classes.

    The lecture will be video broadcast for students in Koeln. For technical reasons, this may cause a change of location (even though it is unlikely).
    6936  Wave optics and astronomical applications
    Mi 15.30-17, MPIfR, HS 0.02
      Instructor(s): G. Weigelt
      For term nos.: ab 1.
      Hours per week: 2
      Prerequisites: Keine
      Contents: Fourier mathematics and Fourier optics,
    digital image processing,
    Michelson interferometry,
    speckle interferometry,
    bispectrum speckle interferometry,
    interferometric spectroscopy,
    optical long-baseline interferometry
      Literature: J.W. Goodmann, Statistical Optics (Wiley Interscience)
    J.W. Goodmann, Fourier Optics (McGraw Hill)
    6937  Nucleosynthesis
    Do 11-13, R. 0.05
    Fr 9, R. 0.05
    Exercises: 1 hr. by appointment
      Instructor(s): N. Langer, S. Yoon
      For term nos.: 6+
      Hours per week: 3 + exercises
      Prerequisites: Stars and Stellar Evolution
      Contents: The principle aim of this course is to achieve an understanding of the
    origin of the elements, i.e. of the abundance distribution of all stable
    isotopes in our solar system and elsewhere in the universe. As the vast
    majority of all isotopes is formed by stars, a basic knowledge of stellar
    structure and evolution is required to follow this course. The following
    subjects are considered:

    - Thermonuclear reaction rates and nuclear networks
    - Big bang nucleosynthesis
    - Hydrostatic nuclear burning in stars
    - Explosive nucleosynthesis in massive stars
    - Explosive burning of degenerate matter in white dwarfs
    - s-Process nucleosynthesis in AGB stars
    - s-Process nucleosynthesis in massive stars
    - The r-Process and the p_Process in Supernovae
    - Element formation in the most massive stellar objects
    - Cosmic ray induced element formation
    - Principles of the chemical evolution of Galaxies
      Literature: Lecture Manuscript
    6939 Stellar and solar coronae
    Do 9.00-10.30, MPIfR, HS 0.01
    Exercises: 1 hr. by appointment
      Instructor(s): M. Massi
      For term nos.: 5
      Hours per week: 2+1
      Contents: T Tauri (young stellar systems not yet in Main Sequence) and RS CVn systems (evolved stellar systems that already left the Main Sequence), although very diverse systems, have similar flare activities observed at radio and X-ray wavelengths. The flares in both systems are several orders of magnitude stronger than those of the Sun.

    The origin of this activity, defined "coronal activity", depends on the convective zone, the rotation, the formation and dissipation of magnetic fields. In general terms: This is a mechanism of the same type as on the Sun, but enforced by the binary nature of these systems.

    In these lectures we will explore a link between the amplification of initial magnetic fields by dynamo action in several rotating systems ( Sun, binary systems and accretion discs around black holes) and the release of magnetic energy into a corona where particles are accelerated. Together with the basic theory there will be as well illustrated the latest progress in the research on stellar coronal emission derived from recent space missions and high-resolution radio observations.

      Literature: Literature references will be provided during the course
      Comments: http://www.mpifr-bonn.mpg.de/staff/mmassi/#coronae1
    6940 Gravitational lensing
    Di 10-12, HS Astronomie
    Exercises: 1 hr. by appointment
      Instructor(s): P. Schneider, O. Wucknitz
      For term nos.: 8th
      Hours per week: 2 + 1
      Contents: Aims of the course:

    After learning the basics of gravitational lensing followed by the main applications of strong and weak lensing, the students will acquire knowledge about the theoretical and observational tools and methods, as well as about the current state of the art in lensing research. Strong emphasis lies on weak lensing as a primary tool to study the properties of the dark-matter distribution and the equation of state of dark energy

    Contents of the course:

    The detection of the deflection of light in a gravitational field was not only one of the crucial tests of Einstein's Theory of General Relativity, but has become in the past two decades a highly valuable tool for astronomers and cosmologists. It is ideally suited for studying the mass distribution of distant objects, search for compact objects as a potential constituent of the Galactic dark matter, provide powerful (and cheap) 'natural telescopes' to take a deeper look into the distant Universe, to measure the mass distribution in clusters and on larger spatial scales, and to study the relation between luminous and dark matter in the Universe. Principles and methods are described in detail and the applications will be presented.
      Literature: P. Schneider, C. Kochanek, J. Wambsganss; Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33. Swiss Society f Astrophysics and Astronomy (Springer, Heidelberg 2006)

    P. Schneider, J. Ehlers, E. F. Falco; Gravitational Lenses (Springer, Heidelberg 1992)

    In addition, extensive lecture notes will be distributed.
    6941  Galactic and intergalactic magnetic fields
    Mo 9-11, HS Astronomie
    Exercises: 1 hr. by appointment
      Dozent(en): U. Klein
      Fachsemester: 7
      Wochenstundenzahl: 2
      Erforderliche Vorkenntnisse: Electrodynamics
      Inhalt: 1. Introduction
    Magnetism, physical quantities
    History, observational evidence

    2. Radiation processes
    Free-free radiation
    Synchrotron radiation
    Inverse-Compton radiation
    Spinning dust grains

    3. Diagnostics
    Optical polarisation
    Synchrotron radiation
    Faraday rotation
    Zeeman effect
    Polarised dust emission

    5. Milky Way
    Diffuse ISM
    Molecular clouds and star-forming regions
    Supernova remnants
    Acceleration of Cosmic rays

    6. External galaxies
    Spiral galaxies
    Dwarf irregular galaxies
    Elliptical galaxies
    Containment of particles and fields
    Galactic dynamo

    7. Active Galactic Nuclei
    Radio galaxies
    Seyfert galaxies
    Origin of magnetic fields

    8. Intergalactic magnetic fields
    Clusters of galaxies
    Radio halos
    Radio relics
    Magnetisation of the IGM
    Cosmological shacks

    9. Cosmological magnetic fields
      Literatur: M.S. Longair: High Energy Astrophysics, Vol. 1+2 (Cambridge University Press, 2008), and recommendations in the class
    6942  Multiwavelength observations of galaxy clusters
    Mo 15.30-17, MPIfR, HS 0.01
      Instructor(s): T. Reiprich, Y. Zhang, H. Andernach
      For term nos.: 5 or higher
      Hours per week: 2
      Prerequisites: Introductory Astronomy lectures.
      Contents: Aims of the course:
    To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive visible component of galaxy clusters -- the intracuster gas -- cannot be detected with optical telescopes. Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X-ray emission from the intracluster gas. In this course, the students will acquire a synoptic, mulitwavelength view of galaxy groups and galaxy clusters.

    Contents of the course:
    The lecture covers galaxy cluster observations from all wavebands, radio through gamma-ray, and provides a comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, and active supermassive black holes; cluster weighing methods, Sunyaev-Zeldovich effect, gravitational lensing, radio halos and relics, and the most energetic events in the Universe since the big bang: cluster mergers.
      Literature: Lecture script and references therein.
    6943 Hydrodynamics
    Mi 13.30-15.00, HS Astronomie
      Instructor(s): J. Braithwaite
      For term nos.: >6
      Hours per week: 2
      Prerequisites: Thermodynamics, vector calculus, electromagnetism
      Contents: The bulk of the universe is fluid and so an understanding of many phenomena is impossible without a proper grasp of fluid dynamics. This course introduces the field, drawing on examples from astrophysics and atmospheric physics to illustrate the principles.

    Contents of the Course:
    The fluid approximation, Euler equations, ideal fluids, viscous fluids, diffusion of heat, sound waves, hydrostatics, flow around an object, the Bernoulli equation, the Reynolds number and other dimensionless parameters used to describe a flow, compressible and incompressible flow, supersonic and subsonic flow, shock waves (with example: supernovae), surface gravity waves, internal gravity waves, waves in a rotating body of fluid (example: earth's atmosphere), stability analysis (examples: convection, salt fingers in ocean), the magnetohydrodynamics equations, Alfven waves, flux conservation, flux
    freezing, magnetic pressure and tension, force-free fields, reconnection (with example: solar corona), angular momentum transport and the magneto-rotational instability (example: astrophysical discs).
      Literature: E.Landau & E.Lifshitz, "Fluid mechanics" Pergamon Press 1987
    S.Shore, "Astrophysical hydrodynamics: an introduction", Wiley-VCH 2007
    A. Choudhuri, "The physics of fluids and plasmas", Cambridge 1998
    Lecture notes at http://www.astro.uni-bonn.de/~jonathan/misc/astroMHDnotes.pdf
    6944  Introduction to space and astrophysical plasmas
    Do 11-13, HS Astronomie
    Exercises: 2 hrs. by appointment
      Instructor(s): C. Watts
      For term nos.: 5+
      Hours per week: 3
      Prerequisites: Advanced electrodynamics (Bachelor's level)
      Contents: Plasmas account for 99% of the ordinary matter in the universe. These ionized gases have temperatures
    ranging from several thousand to billion’s of degrees, and densities from 1 to 10^25 particles per cubic
    meter. This course surveys the many aspects of plasma physics with an emphasis on space and
    astrophysical manifestations and examples. The focus will be on understanding basic plasma
    phenomena – single particle motions, fluid description of a plasma, plasma waves and oscillations,
    instabilities, – but it will also cover topics in current space plasma research. Such topics include solar,
    ionospheric, stellar and interstellar plasmas.
      Literature: Recommended Texts:
    Introduction to Plasma Physics and Controlled Fusion, Chen
    Introduction to Space Physics, Kivelson

    Useful Texts:
    The Earth's Ionosphere: Plasma Physics and Electrodynamics, Kelley
    Plasma Physics for Astrophysics, Kulsrud
    Solar Astrophysics, Foukal
    6945 Accretion in astrophysics: theory and applications
    Details to be announced
    Exercises: 1 hr. by appointment
      Instructor(s): P. Podsiadlowski
      For term nos.: From Term 4 (Bachelor and Master Program)
      Hours per week: 16 lectures plus 2 problem classes
      Prerequisites: Basic Astrophysics (recommended)
      Contents: This course provides an overview over accretion disk theory: thin disks (the alpha-disk model, disk structure and their appearance, the thermal disk instability, resonances), thick disks (includingradiation-pressure dominated disks), self-gravitating disks and their stability (including the Toomre criterion), relativistic disk accretion, optically thin advection-dominated flows, super-Eddington accretion, the source of disk viscosity (including the magneto-rotational instability), mass loss and jets from accretion disks. The course will emphasize a wide range of applications of accretion-disk theory, such as compact binaries, including black-hole binaries, ultraluminous X-ray sources, active galactic nuclei, proto-stellar systems, gamma-ray bursts. The course targets advanced undergraduate students and beginning graduate students and introduces them to current research problems. A basic background in astrophysics is recommended.
      Literature: Accretion Power in Astrophysics by J. Frank,
    A. King and D. Rainer, Cambridge University Press (3rd edition)

    plus selected review papers
      Comments: Schedule of Lectures:


    April 26, April 27
    May 17, May 18
    June 7, June 8
    July 6
    July 13

    Time: 9 - 11 am

    Problem set classes: to be arranged
    6931  Astrophysics of galaxies
    Do 15-18, HS Astronomie
    Exercises: 2 hrs. in groups
      Instructor(s): P. Kroupa, I. Georgiev
      For term nos.: 7. and 8.
      Hours per week: 3+2
      Prerequisites: The following lectures ought to have been attended: Introduction to Astronomy I and II, Stars and Stellar Evolution, The Interstellar Medium
      Contents: The types of galaxies;

    foundations of stellar dynamics (Jeans equations, relaxation time);

    elliptical galaxies;

    disk galaxies;

    stellar populations in galaxies;

    formation of galaxies;

    dwarf galaxies (normal dwarfs, tidal dwarfs, ultra-compact dwarfs);

    galactic nuclei and their supermassive black holes;

    dark matter and alternatives to Newtonian gravity.

      Literature: Galactic dynamics by J.Binney and S.Tremaine (1987, Princeton University Press);

    Galactic Astronomy by J.Binney and M.Merrifield (1998, Princeton University Press);

    Galaxies in the Universe by L.Sparke and J.Gallagher (2000, Cambridge University Press)
      Comments: This course is worth 6 credit points. To achieve these attendance of the lectures is required and the exam needs to be passed.

    This is course astro821 in the Masters of Astrophysics programme.
    6964  Seminar on stars, stellar systems, and galaxies
    Fr 14-16, R 3.19 (oder HS 0.05)
      Instructor(s): P. Kroupa, N. Langer
      For term nos.: 7. and higher
      Hours per week: 2
      Prerequisites: Vordiplom or Bachelor in physics;
    The lecture "Stars and Stellar Evolution" (astro811);
    The lecture "Astrophysics of Galaxies" (astro821)
      Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics;
    current and preliminary research results by AIfA members and guests on the above topics.
      Literature: Latest astro-ph pre-prints, or recently published research papers.
      Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

    The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research.

    This is course astro893 in the Masters of Astrophysics programme.
    6966  Seminar on theoretical dynamics
    Fr 9-11, R. 3.19
    oder nach Vereinbarung
      Instructor(s): P. Kroupa
      For term nos.: 5th and upwards
      Hours per week: 2
      Prerequisites: Diploma or BSc in physics.
      Contents: Formation of planetary and stellar systems;
    Stellar populations in clusters and galaxies;
    Processes governing the evolution of stellar systems.
      Literature: Current research papers and own research.
      Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

    Students and post-docs present the current state of their own research to a critical audience.

    Start date: after arrangement
    6968 Seminar on strong gravitational lensing and lens modelling
    Fr 17-19, R. 3.19
      Instructor(s): O. Wucknitz u.M.
      For term nos.: >= 5
      Hours per week: 2
      Prerequisites: basic understanding of astronomy and gravitational lenses in particular
      Contents: Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling
      Comments: The format of this seminar is a mixture of more formal presentations and informal discussions.
    6970  Seminar on galaxy clusters
    Do 15-17, R. 3.19
      Instructor(s): T. Reiprich, Y. Zhang
      For term nos.: 5 or higher
      Hours per week: 2
      Prerequisites: Introduction to Astronomy.
      Contents: The students will report about up to date research work on galaxy clusters based on scientific papers.
      Literature: Will be provided.
    6971 Seminar on stellar evolution and hydrodynamics
    Do 13.30-15, R. 3.19
      Instructor(s): J. Braithwaite, N. Langer, S. Yoon
      For term nos.: >6
      Hours per week: 1
      Prerequisites: Bachelor in Physics (or equivalent)
    The lecture "Stars and Stellar Evolution"
      Contents: The latest work on stellar physics will be discussed. There is some emphasis on work currently being undertaken by researchers in Bonn, but in addition the latest results from elsewhere will be presented and discussed.
      Literature: Latest astro-ph pre-prints or other recent research papers.
    6961  Seminar on astronomy and astrophysics
    Mo 14.00-15.30, HS Astronomie
      Instructor(s): P. Kroupa, F. Bertoldi, J. Kerp, U. Klein, M. Kramer, N. Langer, M. Massi, K. Menten, C. Porciani, T. Reiprich, P. Schneider, G. Weigelt, O. Wucknitz
      For term nos.: Vordiplom in physics
      Hours per week: 2
      Prerequisites: Lectures: Introduction to Astronomy I and II.
      Contents: Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, quasars, cosmology).
      Literature: Current research papers.
      Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminars of the other students and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

    The students will learn to hold a formal but pedagogical presentation about a subject of current international research.

    Start: 12.04.