.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Sommersemester 2011

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

physics633  High Energy Collider Physics
Mo 14-16, We 8-10, HS, IAP

  Instructor(s): S. Hillert, J. Kroseberg
  Prerequisites: Introductory Particle Physics + Quantum Mechanics
  Contents: This course on experimental particle physics deepens and widens the topics covered in the Particle Physics
(physics611) lecture. The emphasis is put on physics and experimental methods relevant to current hadron
collider experiments. Topics include: electroweak precision measurements, proton structure, QCD studies
at hadron colliders, Higgs boson searches, top quark physics, and searches for physics beyond the
standard model.
  Literature: The lectures does not follow a particular text book. Recommendations on background literature will be
provided during the course.
physics639  Advanced Topics in High Energy Particle Physics
We 12, Th 8-10, HS, IAP

  Instructor(s): J. Dingfelder, M. Kowalski
  Prerequisites: Course lecture "Nuclear and Particle Physics".
Knowledge of particle physics, as obtained for instance from the lecture "Particle Physics"
given in the winter semester, is recommended.
  Contents: This lecture complements the introductory courses in particle physics.
It will focus on topics in flavor physics, from the physics of B mesons
(CP violation, measurements of the CKM matrix and SM parameters, search for
new physics with rare decays) to the physics of neutrinos (neutrino oscillations, neutrino masses,
recent and future neutrino experiments) and selected measurements at the LHC.
  Literature: Will be given in the lecture
physics631  Quantum Optics
Tu 10-12, Th 15-17, HS, IAP

  Dozent(en): M. Weitz
  Erforderliche Vorkenntnisse: Optik und Atomphysik-Grundvorlesung, Quantenmechanik
  Inhalt: Atom-Licht Wechselwirkung, Bloch-Vektor
Kohaerenz von Licht
Quantisierung des Lichtfeldes
Zwei- und Dreiniveauatome
Laserkuehlung von Atomen, Quantengase
  Literatur: R. Loudon; The quantum theory of light (Oxford University Press 2000)
G. J. Milburn, D. F. Walls; Quantum Optics (Springer 1994)
D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition. 2005)
M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
P. Meystre, M. Sargent; Elements of Quantum Optics (Springer 1999)
  Bemerkungen: Vorlesung: 3 Semesterwochenstunden
Übung: 2 Stunden alle 14 Tage im Wechsel mit der Vorlesung: 1 Semesterwochenstunde
Di 10 c.t.-12: Vorlesung
Do 15 c.t.-17: Vorlesung bzw. Übung
physics634 Magnetism and Superconductivity
We 10-12, Fr 10-12, HS, IAP

  Dozent(en): E. Soergel
  Erforderliche Vorkenntnisse: Physik IV
  • Magnetism: orbital and spin magnetism without interactions, exchange interactions, phase transitions, magnetic ordering and domains, spin waves (magnons), colossal magnetoresistance
  • Superconductivity: macroscopic aspects, type I and type II superconductors, Ginzburg-Landau theory, BCS theory, Josephson effect, high-temperature superconductivity
  • Superfluidity: experiments & phenomenological description
  • Low-Temperature Physics: generation and measurement of low temperatures
  • Hunklinger: Festkörperphysik
  • Hunklinger: Tieftemperaturphysik
  • Buckel/Kleiner: Supraleitung
  • Blundell: Magnetism in condensed matter
  Bemerkungen: Language will be English or German at the discretion of the audience.
physics635  Laser Spectroscopy
Tu 8-10, Th 13-15, HS, IAP

  Instructor(s): D. Meschede
  Prerequisites: Quantum Mechanics, Atomic Physics, Condensed Matter Physics
  Contents: The Lecture will cover applications of laser radation ranging from fundamental to applied physics.

Topics include:
Linear & nonlinear spectroscopy, Fourier spectroscopy, ultrashort pulses, coherent phenomena, atomic clocks, optical tweezers, angular momentum light beams, laser cooling and more.
  Literature: D. Meschede, Optics, Light & Lasers, Wiley
W. Demtröder, Laser Spectroscopy
physics636 Advanced Theoretical Particle Physics
Tu 16-18, Fr 9, HS I, PI

  Instructor(s): H.-P. Nilles
  Prerequisites: Course in Theoretical Particle Physics
  Contents: Introduction to Supersymmetry and Supergravity
Supersymmetric extension of the Standard Model (MSSM)
Supersymmetric Grand Unification
Theories of higher dimensional space-time
Supersymmetry in higher dimensions
Unification in extra dimensions
Basic elements of string theory
  Literature: J.Wess and J.Bagger, Supersymmetry and supergravity, Princeton Univ. Press. 1992
H.P. Nilles, Physics Reports 110C(1984)1
D.Bailin and A.Love, Supersymmetric Gauge Field Theory and String Theory,
IOP Publishing Ltd. 1994
  Comments: Language will be English or German at the discretion of the audience.

First lecture will be on Tuesday April 5th, 2011
physics637  Advanced Theoretical Hadron Physics
Tu 10-12, Th 9, SR II, HISKP

  Instructor(s): B. Kubis, A. Rusetsky
  Prerequisites: Theoretical Hadron Physics (physics616) would be useful

  • Analytic properties of Feynman diagrams

  • Effective field theories

  • Symmetries of QCD

  • Chiral perturbation theory

  • Non-relativistic effective theories

  • Heavy quark effective theory

  • Physics at large Nc

  • Effective theory of the electroweak symmetry breaking sector


  1. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley (1995)

  2. J.F. Donoghue, E. Golowich, and B.R. Holstein, Dynamics of the Standard Model, Cambridge (1992)

  3. S. Scherer, Introduction to Chiral Perturbation Theory, in: J.W. Negele and E.W. Vogt (eds.), Adv. Nucl. Phys. 27 (2003) 277 [arXiv:hep-ph/0210398]

  4. A.V. Manohar and M.B. Wise, Heavy quark physics, Cambridge (2000)

  5. E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B160 (1979) 57

  Comments: Language: English/German at the discretion of the audience
physics712 Advanced Electronics and Signal Processing
We 15-17, Fr 9, HS, IAP

  Instructor(s): S. Böser, H. Krüger
  Prerequisites: Electronics lab course, physics of detectors lecture

  1. Electronic Devices
  2. semiconductor basics, diodes, transitors
  3. Basic Circuits
  4. inverter, logic gates, storage elements, current and voltage sources, amplifiers
  5. Detector Readout Techniques
  6. charge sensitive amplifier, shaper, analo to digital conversion
  7. Resolution and Noise
  8. physical noise sources, equivalent noise sources, noise in CSA + shaper systems
  9. VLSI Technology
  10. wafer production, CMOS technology steps, advanced technologies
  11. Digital Data Processing
  12. Analog to digital conversion, FPGA, processing algorithms
  13. Radiation Damage
  14. bulk damage, surface damage, radiation effects in integrated electronics
  15. Examples

  Literature: The lectures does not follow a particular text book. Recommendations on background literature will be provided during the course.
  Comments: The exercises to this lecture will be organized as a Chip Design Tutorial at the end of the term.
physics714  Advanced Accelerator Physics
We 10-12, Th 10-12, SR I, HISKP
Lecture on Thursday, April 7th, will take place in HS, HISKP

  Dozent(en): W. Hillert, A. Lehrach, R. Maier
  Erforderliche Vorkenntnisse: Mechanics, Electrodynamics, basic knowledge in Physics of Particle Accelerators (e.g. Accelerators Physics)
  Inhalt: Diese Veranstaltung ist eine Fortführung und Vertiefung der Vorlesung „Physik der Teilchenbeschleuniger“. Hier sollen, neben der Behandlung der Synchrotronstrahlung und ihrem Einfluss auf die Strahleigenschaften in Elektronenbeschleunigern, vornehmlich kollektive Phänomene wie optische Resonanzen und Instabilitäten diskutiert werden. Darüber hinaus ist eine Vertiefung des Lehrstoffes in praktischen Übungen am Beschleuniger ELSA geplant.

This course is a continuation of the lecture „Accelerator Physics“. In addition to the treatment of synchrotron radiation and its influence on the beam characteristics in electron accelerators, mainly collective phenomena like optical resonances and instabilities will be discussed. Furthermore, deepening the subject matter by practical exercises at the ELSA accelerator facility is planned.
  Literatur: H. Wiedemann, Particle Accelerator Physics, Springer 1993, Berlin, ISBN 3-540-56550-7

D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN 0-471-55163-5

F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, Springer 1996, Berlin, ISBN 3-540-61238-6

K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4

S. Y. Lee, Accelerator Physics (Second Edition), World Scientific, Singapore 2004, ISBN 981-256-200-1 (pbk)

Script of the lecture “Accelerator Physics”: http:/www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik
  Bemerkungen: Es besteht die Möglichkeit, den Lernstoff durch detaillierte Besichtigungen und praktische Studien an der Beschleunigeranlage ELSA des Physikalischen Instituts zu veranschaulichen und zu vertiefen. Exkursionen zu anderen Beschleunigern sind vorgesehen. Zu dieser Vorlesung wird ein Script im Internet (pdf-Format) zur Verfügung gestellt.

The opportunity will be offered to exemplify and deepen the subject matter by detailed visits and practical studies at the institute of physics’ accelerator facility ELSA of the institute of physics. Excursions to other accelerators are intended. Accompanying the lecture, a script (pdf-format, english) is provided in on the internet.
physics716  Statistical Methods of Data Analysis
Fr 14-16, SR I, HISKP
  Instructor(s): I. Brock
  Prerequisites: Some prior knowledge of particle physics would be helpful.
  Contents: From the first lab. course that you take to the design and construction of an experiment; from the first simulations to the final analysis of the data from our experiment, the proper application of statistical methods is essential.

The aim of this course is to provide a foundation in statistical methods and to give some concrete examples of how the methods are applied to data analysis. Standard statistical distributions will be discussed and examples given of when they are expected to occur and how they are related.

Techniques for fitting data will be discussed. The treatment of systematic errors, as well as methods to combine results from different experiments which may have common error sources will also be covered.

The search for new physics, even when no signal is observed, allows limits to be placed on the size of possible effects. These can provide severe constraints on theoretical models. Methods for calculating upper limits taking into account several error sources will also be considered.
  Literature: R. J. Barlow: Statistics
V. Blobel and E. Lohrmann: Statistische und numerische Methoden
der Datenanalyse
F. James: Statistical methods in experimental physics
physics717  High Energy Physics Lab
4 to 6 weeks on agreement
  Instructor(s): E. von Törne
  Contents: This course offers students in their first year of their Master studies the opportunity to participate in research activities.
  Comments: The students join one of the high energy physics groups groups and conduct their own small research project for typically 4 weeks. We recommend to participate in a project during term break (either in spring or summer/ early fall) but projects during the semester are also possible. More information here: http://heplab.physik.uni-bonn.de/
physics718  C++ Programming in High Energy Physics
We 13-15, HS, IAP
  Instructor(s): E. von Törne
  Prerequisites: Basic understanding of a programming language (C, Java, ..) is required. Basic constructs such as if-clauses, for-loops and such are not introduced in this lecture.
  • Introduction, Basic ingredients of C and C++
  • Object orientation: classes, encapsulation, inheritance, polymorphism
  • How to solve physics problems with C++
  • How to navigate in complex programs
  • How to write and maintain complex programs
  • C++ in Data analysis, example: the ROOT library
  • C++ and large scale calculations
  • Standard Template Library
  • Debugging and profiling
  • Test-driven design
  • Eckel: Thinking in C++, Prentice Hall 2000.
  • Lippman, Lajoie, Moo: C++ Primer, Addison-Wesley 2000.
  • Deitel and Deitel, C++ how to program, Prentice Hall 2007.
  • Stroustrup, The C++ Programming Language, Addison-Wesley 2000.
  Comments: Exercises will be held in the CIP-pool (AVZ). In the exercises students will be introduced to modern programming tools, such as Debugger, profiler, integrated development environments (eclipse).
physics719 BCGS intensive week (Advanced Topics in Experimental High Energy Physics)
From Chips to Higgs: LHC Detectors and Physics in one week
  Instructor(s): N. Wermes u.M.
  Prerequisites: not mandatory but useful and recommended
lecture on particle physics
lecture on detectors
lab course electronics or lecture electronics
  Contents: This BCGS intensive week aims at providing a detailed insight of an LHC detector and the experiments that are done with them to address important questions of fundamental physics today. What does one need to know to built such detectors and to analyse LHC data? While following these lines, particular emphasis is given to
- the scientific and technical requirements of LHC detectors
- the necessity of and a sniff into the "how-to" of designing integrated circuits (chips)
- the physics of tracking and energy detectors
- the theoretical background of LHC physics (Standard Model, Higgs, SUSY, Extra Dimensions)
- the experimental methods to address these physics questions

Of course, not all topics can be addressed to depth within one week. Thus an effort is made that students will receive an overview and understand the most important mechanisms.
The style will be >50% lecture style plus some hands-on experience (eg IC design - Schnupperkurs, Lab Visits, discussions over coffee, dedicated guest talks like the "Use of Multivariate Analysis techniques".)
  Comments: More information will follow closer to the date of the intensive week.
physics732  Optics Lab
4 to 6 weeks on agreement
  Instructor(s): M. Fiebig, D. Meschede, F. Vewinger, M. Weitz
  Contents: The Optics Lab is a 4-6 week long practical training/internship in one of the research groups in Photonics and Quantum Optics, which can have several aspects:
- setting up a small experiment
- testing and understanding the limits of experimental components
- simulating experimental situations

Credit points can be obtained after completion of a written report.

  Literature: Will be given by the supervisor
physics737  BCGS Intensive Week: Advanced Topics in Photonics and Quantum Optics
  Instructor(s): F. Vewinger
  Prerequisites: Bachelor in Physics or "Vordiplom"
  Contents: Topic: Build your own Laser

The intensive week contains focused lectures, seminar talks given by the participants, as well as advanced practical training. Lectures and seminar talks will provide the fundamentals of laser physics needed in order to understand how to build a laser from scratch. In the practical training the participants will set up different laser types in groups, and will characterize their setup.

  Literature: Literature information will be provided during the course
  Comments: The intensive week will take place from August 15–19, 2011 (full day).

The language will be English if one or more participants require this.

Participation is limited to 10 students, thus an early application is recommended. Application is possible using the web interface
physics738  Lecture on Advanced Topics in Quantum Optics: Basics of Quantum Information
Th 10-12, HS, IAP
  Instructor(s): F. Vewinger
  Prerequisites: BSc
  Contents: This course provides an introduction to the theory and experimental realizations of quantum information. Topics covered include the physics of information processing; quantum logic; quantum algorithms including Shor's factoring algorithm and Grover's search algorithm; quantum error correction; quantum communication and cryptography.
  Literature: M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
Additional Literature will be given in the lecture
physics739 Lecture on Advanced Topics in Photonics: Photonic Crystals, Plasmonics, and Metamaterials
Tu 15-17, HS, IAP
  Instructor(s): S. Linden
  Contents: Nanophotonics deals with the interaction of light with materials which are structured on a (sub-) wavelength scale. Proper design and fabrication of nanostructures can result in optical properties which are not available from the corresponding bulk materials. For instance, a Photonic Crystal, i.e., a periodic dielectric nanostructure, can act as a perfect mirror even though the Photonic Crystal's constituent materials are transparent. Other examples are localized “hot spots” in plasmonic materials or photonic metamaterials which exhibit a negative index of refraction.

The lecture covers different theoretical and experimental aspects of nanophotonic materials and gives an overview on the current status of this fascinating field of research.
physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11 or Mo 11-13, laboratories of the research group, IAP
kick-off meeting: 9:15, Mo April 4th, Konferenzraum, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Montag, den 4.4.11, 9 c.t.,
Konferenzraum IAP, 3. Stock Wegelerstr. 8

Seminartermin 11-13 Uhr ab 18.4.11
physics751  Group Theory
Mo 10-12, We 9, SR I, HISKP

  Instructor(s): B. Metsch
  Prerequisites: quantum mechanics, some knowledge of linear algebra

  1. Finite groups

  2. Group representations and character theory

  3. Permutation group and Young tableaux

  4. Lie groups and algebras

  5. SU(2), SU(3) and the Poincaré group


  • H.F. Jones, Groups, representations and physics, 2nd ed.
    (Taylor & Francis, New York, 1998)

  • H. Georgi, Lie algebras in particle physics, 2nd ed.
    (Perseus, Reading, Mass., 1999)

  • F. Stancu, Group theory in subnuclear physics
    (Clarendon, Oxford, 1996)

  • M. Hamermesh, Group theory and its application to physical problems
    (Dover, New York, 1989)

physics753 Theoretical Particle Astrophysics
Mo 8-10, Tu 12, HS I, PI

  Instructor(s): H. Dreiner
  Prerequisites: Particle physics class, Exp and Th class
  Contents: Application of particle physics to astrophysical and cosmological problems
  Literature: Kolb and Turner
physics754  General Relativity and Cosmology
Mo 12, We 14-16, HS I, PI
  Instructor(s): S. Förste
  Prerequisites: Theoretical Physics I and II,
Basic Lectures in Mathematics
  Contents: Special Relativity (recap),
Riemannian Geometry,
Einstein's Equation,
Linearised Gravity,
Gravitational Collapse and Black Holes,
  Literature: H. Stephani: General Relativity (Cambridge University Press), also available in German from publisher DVW

L.D. Landau and E.M. Lifshits: Course of Theoretical Physics, Volume 2: Classical Theory of Fields (Butterworth-Heinemann), also available in German from publisher Harry Deutsch

P.K. Townsend: Black Holes, arXiv:gr-qc/9707012
physics755  Quantum Field Theory
Mo 16-18, Th 12, HS I, PI

  Instructor(s): A. Klemm
  Prerequisites: Advanced quantum theory (physics606)
  Contents: Classical field theory, Internal and external symmetries and conservation laws
Path integral formalism and canonical Quantization
Feynman graphs and Combinatorics
Application to Quantum Electrodynamics
Methods of regularization: Pauli-Villars, dimensional
Applications in many particle systems
  Literature: Peskin, Schroeder. Quantum Field Theory. Addison-Wesley
Weinberg. Quantum Theory of Fields. Cambridge University Press
Ryder. Quantum Field Theory. Cambridge University Press
Zee. Quantum Field Theory in a Nutshell. Princeton University Press
Banks. Modern Quantum Field Theory. Cambridge University Press
Srednicki. Quantum Field Theory. Cambridge University Press
Mandl-Shaw. Quantum Field Theory. Wiley
physics773  Physics in Medicine II: Fundamentals of Medical Imaging
Mo 9-11, HS, IAP, We 12, SR I, HISKP

  Instructor(s): K. Lehnertz
  Prerequisites: Vordiplom/Bachelor
  Contents: Introduction to physical imaging methods and medical imaging
(1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission
computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI
(1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect
(1b) applications: analysis of structure and function
(2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging
(2a) Basics of neuroelectromagnetic activity, source models
(2b) instrumentation, detectors, SQUIDs
(2c) signal analysis, source imaging, inverse problems, applications
  Literature: 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl.
2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
5. W. Buckel: Supraleitung, VCH Weinheim, 1993
6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998
More literature will be offered
  Comments: Beginning: Mo, Apr 4; 9:00 ct
physics651 Seminar on Detectors for Particle and Nuclear Physics
Tu 14-16, Zi. 300, PI

  Instructor(s): J. Jolie (Köln), N. Wermes
  Prerequisites: Vordiplom or Bachelor, advanced class
useful: particle physics and/or nuclear physics lectures
useful: physics of detectors lecture
  Contents: The seminar will discuss special detectors and detector classes in nuclear and particle physics.

Examples are
- Interactions of Particles (charged, neutral) with matter
- Tracking Detectors
- Gas-filled Tracking Detectors
- Semiconductor Tracking Detectors
- Calorimeter (Elektromagn. und Hadronic)
- Particle Identification Methods
- ToF
- dE/dx
- Cerenkow
- Transition Radiation

possible topics also are: noise, readout methods, etc.
  Literature: W.R. Leo Techniques for Nuclear and Particle
Physics Experiments
K. Kleinknecht Detektoren für Teilchenstrahlung
D. Green The Physics of Particle Detectors
G. Knoll Radiation Detection and Measurement
  Comments: The seminar is a joint seminar between the universities of Bonn and Cologne within the Bonn-Cologne Graduate School, but is open to all students.
The seminar will take place alternating in Bonn (Room 300, Phys. Inst.) and in Cologne (Inst. f. Kernphysik).
physics652  Seminar on Quantum Simulators
Mo 16-18, wöchentlich wechselnd zwischen Bonn (Konferenzraum IAP) und Köln (Konferenzraum des Instituts für Theoretische Physik)

  Instructor(s): D. Meschede, A. Rosch (Köln)
  Prerequisites: Theory Course, Atomic Physics, Condensed Matter Physics
  Contents: Quantum Simulators

Almost 30 years ago, Richard Feynman put forward the idea of a quantum simulator: one quantum system is used to simulate the properties of another, more complex quantum systems. Ideally such a task can be accomplished by a universal quantum computer. But as quantum computers are not yet available, one uses instead tailor-made model systems, for example, ultracold atoms manipulated using the tools of quantum optics.

In this joint theoretical and experimental seminar we discuss important theoretical concepts underlying quantum simulators and study some of the most recent experimental realizations. For example, we will investigate how some of the most spectacular phenomena of solid state physics, like superconductivity or metal insulator transitions can be simulated by ultracold atoms captured in a lattice made of light.
  Literature: The seminar is based on original literature which will be distributed.
  Comments: Participants may sign-up any time for the seminar, and early assignments of topics are welcome.

Travel BN-K will be synchronized by the train schedules.

First meeting: On April 04, 16:00 at Bonn and Cologne separately (video transmission)
physics654 Seminar Medical Physics: Physical Fundamentals of Medical Imaging
Mo 14-16, SR I, HISKP

  Instructor(s): K. Lehnertz, K. Maier
  Prerequisites: Vordiplom/Bachelor
  Contents: Physical Imaging Methods and Medical Imaging of Brain Functions
Emission Computer Tomography (PET)
- basics
- tracer imaging
- functional imaging with PET
Magnetic Resonance Imaging (MRI)
- basics
- functional MRI
- diffusion tensor imaging
- tracer imaging
Biological Signals: Bioelectricity, Biomagnetism
- basics
- recordings (EEG/MEG)
- source models
- inverse problems
  Literature: 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik,
Siemens, 3. Aufl.
3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin,
4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
5. Ed. S. Webb: The Physics of Medical Imaging, Adam
  Comments: Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo Apr. 4
physics657  Seminar on Hadron Physics with Antiprotons
Th 14-16, SR II, HISKP

  Instructor(s): H.-W. Hammer, C. Hanhart, S. Krewald, B. Kubis, U. Meißner, B. Metsch, A. Nogga, A. Rusetsky, A. Wirzba
  Prerequisites: Quantum Mechanics
  Contents: The seminar will address the key topics of the future hadron physics program with antiprotons at FAIR (the Facility for Antiproton and Ion Research), and will put them into perspective by discussing the corresponding theoretical approaches in Quantum Chromodynamics, the underlying theory of strong interactions.
  Literature: J.F. Donoghue, E. Golowich, B.R. Holstein,
Dynamics of the Standard Model
Cambridge University Press, 1992

Topic specific literature will be provided.
  Comments: There are no prerequisites other than quantum mechanics.
The seminar will be held in English or German at the discretion of the audience. The first meeting, where the list of topics will be distributed, is on Thursday, April 07, 2011.
physics658  Seminar on Astroparticle Physics
Fr 10-12, Konferenzraum I, Zi. W160, PI

  Instructor(s): M. Drees, M. Kowalski, E. von Törne
  Prerequisites: Introductory particle physics is required. A prior class in (experimental and/or theoretical) astroparticle physics may be helpful, but is not required; the same goes for introductory cosmology.
  Contents: Astro-particle physics deals with particle physics aspects of astrophyiscs and (early universe) cosmology. This seminar combines experimental and theoretical astro-particle physics.

Possible topics for seminar talks include: Neutrino oscillations; solar neutrinos and their detection; atmospheric neutrinos and their detection; neutrinos from core collapse supernovae; observational evidence for Dark Matter; calculation of the thermal WIMP Dark Matter density; direct WIMP detection; indirect WIMP detection; Big Bang Nucleosynthesis and the abundance of light elements; cosmic microwave background -- theory and observations; cosmic rays.

Students are encouraged to suggest additional topics.
  Literature: Literature for each talk will be provided.
6801 Einführung in die Supersymmetrie / Introduction to Supersymmetry (D/E)
Blockvorlesung, 20.06.2011 - 22.06.2011
Termine siehe Aushang
  Instructor(s): E. Kraus
  Prerequisites: Relativistische Quantenmechanik,
Grundkenntnisse in Quantenfeldtheorie

  • Supersymmetrie-Algebra

  • Wess-Zumino-Modell

  • Supersymmetrische Erweiterung der QED

  • Wess-Zumino-Eichung

  • Weiche Brechungen der Supersymmetrie


  1. J. Wess and J. Bagger, "Supersymmetry and Supergravity", (Princeton University Press, 1982);

  2. H.P. Nilles, Phys. Rep. 110 (1984) 1;

  3. S.P. Martin, "A supersymmetry primer", hep-ph/9709356;

  4. M. Sohnius, "Introducing Supersymmetry", Phys. Rep. 128 (1985) 39.

  Comments: Blockvorlesung mit 5 bis 6 Vorlesung vom 20.6.2011 bis 22.6.2011
6802 Stochastische Vielteilchensysteme
Do 16-18, SR II, HISKP
  Instructor(s): G. Schütz
  Prerequisites: Quantum Mechanics I
  Contents: Markov processes; Random walks; Driven diffusive systems; Emergence of large-scale behaviour; Nonequilibrium phase transitions; Pattern formation in random processes; Applications in complex systems, in particular molecular motors in biological cells and vehicular traffic on highways
  Literature: 1) N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North Holland Publishing Company, Amsterdam 1981

2) Stochastic Transport in Complex Systems - From Molecules to Vehicles
By Andreas Schadschneider, Debashish Chowdhury & Katsuhiro Nishinari Elsevier, 2010

3) G. M. Schütz, Exactly solvable models for many-body systems far from equilibrium, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 2001), Vol. 19
  Comments: Essentially this lecture series deals with the question how predictable, complex
behaviour can emerge from simple random processes. Some lecture notes will be available. The language will be German or English, depending on who attends.

First lecture: 14 APRIL 2011
6805 Laboratory in the Research Group
(specifically for members of BIGS)
General introduction at the beginning of the term, see special announcement
  Instructor(s): Dozenten der Physik
  Prerequisites: Two years of physics studies (Dipl., B.Sc.)
  Contents: Practical training/internship in the research group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations
  Literature: Will be given individually
  Comments: The minimum duration is 30 days, or 6 weeks. Projects are always available. In order to obtain credit points, a report (3-10 pages) is required. No remuneration is paid for this internship.
6826 Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Instructor(s): F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M.
  Prerequisites: Lectures on detectors and electronics lab course
  Contents: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Pixel Detectors and Micro-Electronics
  Literature: will be handed out
  Comments: early aplication necessary

6827 Praktikum in der Arbeitsgruppe: Proton-Proton-Kollisionen am LHC / Research Internship: Proton-Proton-Collisions at LHC (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Instructor(s): M. Cristinziani, S. Hillert, J. Kroseberg, E. von Törne, N. Wermes u.M.
  Prerequisites: Lectures on Particle Physics
  Contents: Within 4 weeks students receive an overview/insight of the research carried out in our research group.

Topics: Analyses of data taken with the ATLAS Experiment at the LHC
especially: Higgs and Top physics, tau-final states and b-tagging

The exact schedule depends on the number of applicants appearing at the same time.
  Literature: wird gestellt
  Comments: Early application is required
Contacts: E. von Törne, M. Cristinziani, S. Hillert, J. Kroseberg, N. Wermes
6828 Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group:
Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E)
pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., Applications to brock@physik.uni-bonn.de, PI
  Instructor(s): I. Brock u.M.
  Prerequisites: Introductory particle physics course
  Contents: Introduction to the current research activities of the group (physics analysis with data from ZEUS (HERA) and ATLAS (LHC)), introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques.

Depending on the students' preferences the course will be given in German or in English.
6830 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language (e.g. C, C++, Pascal)
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.

Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:

Prof. Dr. K. Lehnertz

email: klaus.lehnertz@ukb.uni-bonn.de
6836 Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Instructor(s): D. Meschede u.M.
  Prerequisites: Two years of physics studies (undergraduate/ bachelor program)
  Contents: Practical training in the research group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations

The minimum duration is 30 days, or 6 weeks.
  Literature: will be individually handed out
  Comments: Projects are always available. See our website.
6837 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

6838 Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin
pr, Kliniken Venusberg
(Teilnahme am Seminar "Medizinische Physik" erforderlich)
  Instructor(s): K. Lehnertz, C. Berg, P. David, K. Reichmann, F. Träber, P. Trautner
  Prerequisites: Teilnahme am Seminar "Medizinische Physik: Physikalische Grundlagen der medizinischen Bildgebung"
  Contents: Vertiefung der Seminarthemen;
Praktische Beispiele der Bildgebung in der pränatalen Diagnostik, Nuklearmedizin, Radiologie und Neurowissenschaften
  Comments: Termine werden im Laufe des Semester bekannt gegeben
6839 Public presentation of Science / Öffentliche Präsentation von Wissenschaft
2 SWS, Termin nach Vereinbarung
  Dozent(en): H. Dreiner
  Erforderliche Vorkenntnisse: 1 Semester of physics studies/ 2. Fachsemester Physik
  Inhalt: We prepare and rehearse various activities to bring science to the public. Including public lectures, presenting experiments, instructing elementary school kids.

Wir unternehmen verschieden Aktivitaeten um die Wissenschaft der Oeffentlichkeit naeher zu bringen, einschlisslich Experimentalvortraege, oeffentliche Vortraege, Unterrichtung von Grundschulkindern.
  Bemerkungen: Aktivitaeten koennen auf Deutsch oder Englisch sein.

Activities can be in English or German. (There are two English schools in Bonn, for example.)
6932  Einführung in die Radioastronomie
Di 13.00-14.30, HS Astronomie
Übungen, 1-stündig, n. Vereinbarung
  Dozent(en): J. Kerp, M. Kramer
  Erforderliche Vorkenntnisse: Physik I, II
Astronomie I
  Inhalt: Einführung in die Radiastronomie:

  • Radioastronomie als Technik

  • Instrumente (vom Einzelteleskop zum Square Kilometer Array)

  • Messgrössen (vom Wellenzug zum Spektrum)

  • Technik der Radioastronomie (Empfänger, Spektrometer etc.)

  • Strahlungsprozesse (Atome, Ionen und relativistische Teilchen)

  • Fundamentale Physik in starken Gravitationsfeldern (Neutronensterne und Pulsare)

  • Interstellare Materie (Sternenstehung, Dynamik von Galaxien, Aufbau der Milchstrasse)

  • Erforschung des fernen Universums (Wasserstoff im frühen Universum)

  • Kosmologie mit Radioastronomie (kosmischer Mikrowellenhintergrund)

  Literatur: Skript zur Vorlesung
  Bemerkungen: Die Vorlesung wendet sich an Studierende des Bachelor Studiengangs Physik und Nebenfächler.
Die Vorlesung kann alternativ zu Einführung in die Astronomie (astro122) belegt werden. Anhand von Beispielen werden auch Detailkenntnisse vermittelt die durch das exemplarische Lernen leicht verständlich sein werden. Ziel ist es, einen umfassenden Überblick über die Radioastronomie zu vermittel, der nützlich und sinnvoll für erfolgreiche Bearbeitung von Bachlorarbeiten in diesem Forschungsfeld ist.

Die erste Vorlesung findet am 05.04.2011 statt.

Geplant ist ein Beobachtungspraktikum im Juli 2011 am Radioteleskop Stockert (Eifel). Dort werden alle Beobachtungstechniken in der Praxis erprobt.
Übungen ergänzen die Lehrinhalte.
6933 Physics of the interstellar medium
Di 16-19, HS, Astronomie
Exercises: 1 hr. by appointment
  Instructor(s): F. Bertoldi
  Prerequisites: Electrodynamics
Atomic physics
  Contents: · Historic overview
· Continuum radiation
· Dispersion and polarisation
· Processes at the atomic level
· Line radiation (emission and absorption) and gas parameters to be derived
· Neutral gas
· Ionised gas
· Hot gas
· Dust: quantity, formation, destruction, observability
· Molecules: quantity, formation, destruction, observability
· Energy balance of the ISM
· Structure and evolution of the interstellar medium
  Literature: James Lequeux
The Interstellar Medium
Astronomy and Astrophysics Library, 2004

A.G.G.M. Tielens
The Physics and Chemistry of the Interstellar Medium
Cambridge, 2006

Bruce Draine
Physics of the Interstellar and Intergalactic Medium

Donald E. Osterbrock
Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
Palgrave Macmillan, 2005 (2nd edition)
  Comments: In English. The 3 hours of lecture could be split, with a 1-hour lecure on a different day. We may also
consider the lecture to start at 15h instead of 16h. We will discuss this on the first meeting April 5,
6934  X-ray astronomy
Fr 13-15, HS Astronomie
Exercises: 1 hr. by appointment
  Instructor(s): T. Reiprich
  Prerequisites: Introductory courses on astronomy, atomic physics, and hydrodynamics would be useful.
  Contents: X-rays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of modern X-ray observations of all major X-ray sources, e.g., remnants of exploded stars, the vicinities of lightweight and supermassive black holes, and collisions of galaxy clusters -- the most massive objects in the Universe. The physical properties of X-ray radiation as well as current and future space-based instruments used to carry out such observations will be described. In the accompanying lab sessions, the participants will learn how to download, reduce, and analyze recent X-ray data from a satellite observatory.
  Literature: A bound script of the lecture notes will be provided.
6935  Observational cosmology
Mi 11-13, HS Astronomie
Exercises: 1 hr. by appointment
  Instructor(s): C. Porciani, K. Basu
  Prerequisites: Basic astronomy and cosmology.
  Contents: This class provides an overview of current and future experimental efforts aimed at improving our understanding of the universe, including the nature of dark matter and dark energy. After briefly reviewing the current standard cosmological model, we will focus on the motivations, techniques and aims of the leading experiments in the field. Particular attention will be devoted to:
- Cosmological parameter estimation: Bayesian methods and Markov Chain Monte Carlo simulations
- Experimental design: the Fisher matrix
- Observation and analysis of the CMB
- CMB polarization
- Big Bang Nucleosynthesis
- Optical galaxy redshift surveys and baryonic acoustic oscillations
- Dark energy probes, photometric galaxy surveys
- Cosmology with SN Ia
- Cosmology with galaxy clusters, multi-wavelength observations
- The Sunyaev-Zel'dovich (SZ) effect
- Modeling galaxy clusters with SZ and X-ray
- Reionization of the universe
- Sub-millimeter galaxies
- Inflation / Gravitational waves
  Literature: Some lecture notes and references to review articles will be given in the classroom. No textbook will be followed.
For a general background, students might find useful:

  • "Modern Cosmology" (Dodelson)

  • "Cosmological Physics" (Peacock)

  • "Galaxy Formation" (Longair)

  Comments: For for M.Sc. credit, the student will take exercise classes.

6936  Wave optics and astronomical applications
Mi 15.30-17, MPIfR, HS 0.02
  Instructor(s): G. Weigelt
  Prerequisites: No
  Contents: Fourier mathematics and Fourier optics,
digital image processing,
Michelson interferometry,
speckle interferometry,
bispectrum speckle interferometry,
interferometric spectroscopy,
optical long-baseline interferometry
  Literature: J.W. Goodmann, Statistical Optics (Wiley Interscience)
J.W. Goodmann, Fourier Optics (McGraw Hill)
6937  Nucleosynthesis
Do 11-13, HS 0.05
Fr 9, HS 0.05
Exercises: 1 hr. by appointment
  Instructor(s): N. Langer, S. Yoon
  Prerequisites: Stars and Stellar Evolution
  Contents: The principle aim of this course is to achieve an understanding of the
origin of the elements, i.e. of the abundance distribution of all stable
isotopes in our solar system and elsewhere in the universe. As the vast
majority of all isotopes is formed by stars, a basic knowledge of stellar
structure and evolution is required to follow this course. The following
subjects are considered:

- Thermonuclear reaction rates and nuclear networks
- Big bang nucleosynthesis
- Hydrostatic nuclear burning in stars
- Explosive nucleosynthesis in massive stars
- Explosive burning of degenerate matter in white dwarfs
- s-Process nucleosynthesis in AGB stars
- s-Process nucleosynthesis in massive stars
- The r-Process and the p_Process in Supernovae
- Element formation in the most massive stellar objects
- Cosmic ray induced element formation
- Principles of the chemical evolution of Galaxies
  Literature: Lecture Manuscript
  Comments: http://www.astro.uni-bonn.de/~nlanger/siu_web/nuc11.html
6938 Practical optical astronomy
Details to be announced
  Instructor(s): T. Erben, M. Geffert
  Prerequisites: - Solid knowledge in Astronomy from the courses Astronomy I and Astronomy II in the Physics Bachelor curriculum.

- Solid knowledge in Scientific Computing and Programming from the courses 'Introduction to Computing' and 'Numerical methods for physicists' within the Physics Bachelor curriculum.
  Contents: The students shall gain profound knowledge of both, classical and modern optical observations. Emphasis is given on practical aspects in handling and analyzing astronomical data. The lecture course will develop all necessary steps from raw data as obtained during an observing campaign to the successful scientific exploitation of the data set. If conditions permit the students will perform necessary observations at the 1m telescope at the Hoher List Observatory and subsequently analyze the data in weekly lab sessions.

The lecture course consists of 2x45 Min. lectures and 2x45 Min. lab course per week.

Requirements for the submodule examination (written report); successful work with the exercises
  Literature: Provided upon registration
  Comments: For further information students may contact:
Thomas Erben (terben@astro.uni-bonn.de)
Michael Geffert (geffert@astro.uni-bonn.de)
6939  Stellar and solar coronae
Do 9.00-10.30, MPIfR, HS 0.01
Exercises: 1 hr. by appointment
  Instructor(s): M. Massi
  Contents: T Tauri (young stellar systems not yet in Main Sequence) and RS CVn systems (evolved stellar systems that already left the Main Sequence), although very diverse systems, have similar flare activities observed at radio and X-ray wavelengths. The flares in both systems are several orders of magnitude stronger than those of the Sun.

The origin of this activity, defined "coronal activity", depends on the convective zone, the rotation, the formation and dissipation of magnetic fields. In general terms: This is a mechanism of the same type as on the Sun, but enforced by the binary nature of these systems.

In these lectures we will explore a link between the amplification of initial magnetic fields by dynamo action in several rotating systems ( Sun, binary systems and accretion discs around black holes) and the release of magnetic energy into a corona where particles are accelerated.

Together with the basic theory there will be as well illustrated the latest progress in the research on stellar coronal emission derived from recent space missions and high-resolution radio observations.

  Literature: Golub, L., \& Pasachoff, J.~M.\ 2009,
The Solar Corona
Cambridge University Press, 2
  Comments: http://www.mpifr-bonn.mpg.de/staff/mmassi/#coronae1
6940 Gravitational lensing
Di 10-12, HS Astronomie
Exercises: 1 hr. by appointment
  Instructor(s): P. Schneider, O. Wucknitz
  Contents: Aims of the course:

After learning the basics of gravitational lensing followed by the main applications of strong and weak lensing, the students will acquire knowledge about the theoretical and observational tools and methods, as well as about the current state of the art in lensing research. Strong emphasis lies on weak lensing as a primary tool to study the properties of the dark-matter distribution and the equation of state of dark energy

Contents of the course:

The detection of the deflection of light in a gravitational field was not only one of the crucial tests of Einstein's Theory of General Relativity, but has become in the past two decades a highly valuable tool for astronomers and cosmologists. It is ideally suited for studying the mass distribution of distant objects, search for compact objects as a potential constituent of the Galactic dark matter, provide powerful (and cheap) 'natural telescopes' to take a deeper look into the distant Universe, to measure the mass distribution in clusters and on larger spatial scales, and to study the relation between luminous and dark matter in the Universe. Principles and methods are described in detail and the applications will be presented.
  Literature: P. Schneider, C. Kochanek, J. Wambsganss; Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33. Swiss Society f Astrophysics and Astronomy (Springer, Heidelberg 2006)

P. Schneider, J. Ehlers, E. F. Falco; Gravitational Lenses (Springer, Heidelberg 1992)

In addition, extensive lecture notes will be distributed.
6941  Galactic and intergalactic magnetic fields
Di 13-15, HS 0.05
Exercises: 1 hr. by appointment
  Instructor(s): U. Klein
  Prerequisites: Electrodynamics
  Contents: 1. Introduction
Magnetism, physical quantities
History, observational evidence

2. Radiation processes
Free-free radiation
Synchrotron radiation
Inverse-Compton radiation
Spinning dust grains

3. Diagnostics
Optical polarisation
Synchrotron radiation
Faraday rotation
Zeeman effect
Polarised dust emission

5. Milky Way
Diffuse ISM
Molecular clouds and star-forming regions
Supernova remnants
Acceleration of Cosmic rays

6. External galaxies
Spiral galaxies
Dwarf irregular galaxies
Elliptical galaxies
Containment of particles and fields
Galactic dynamo

7. Active Galactic Nuclei
Radio galaxies
Seyfert galaxies
Origin of magnetic fields

8. Intergalactic magnetic fields
Clusters of galaxies
Radio halos
Radio relics
Magnetisation of the IGM
Cosmological shacks

9. Cosmological magnetic fields
  Literature: M.S. Longair: High Energy Astrophysics, Vol. 1+2 (Cambridge University Press, 2008),
and recommendations in the class

Lecture notes
  Comments: Lecture notes should have been furnished by the start of the semester and will be handed out at zero cost.
6942  Multiwavelength observations of galaxy clusters
Mo 15.30-17, R. 0.18
Exercises: 1 hr. by appointment
  Instructor(s): T. Reiprich
  Prerequisites: Introductory astronomy lectures.
  Contents: Aims of the course:
To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive visible component of galaxy clusters -- the intracluster gas -- cannot be detected with optical telescopes. Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X-ray emission from the intracluster gas. In this course, the students will acquire a synoptic, mulitwavelength view of galaxy groups and galaxy clusters.

Contents of the course:
The lecture covers galaxy cluster observations from all wavebands, radio through gamma-ray, and provides a comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, and active supermassive black holes; cluster weighing methods, Sunyaev-Zeldovich effect, gravitational lensing, radio halos and relics, and the most energetic events in the Universe since the big bang: cluster mergers.
  Literature: A bound lecture script will be provided.
  Comments: Room numbers have changed in the building. This lecture will take place in room 0.006 (formerly 0.18).
6943  Hydrodynamics
Mi 13.30-15.00, HS Astronomie
  Instructor(s): J. Braithwaite
  Prerequisites: Elementary thermodynamics, vector calculus and electromagnetism
  Contents: Almost the entire universe is fluid and so an understanding of many phenomena is impossible without a proper grasp of fluid dynamics. This course introduces the field, drawing on examples from astrophysics as well as atmospheric physics to illustrate the principles. The last quarter of the course is an introduction to magnetohydrodynamics.

Contents of the Course:
The fluid approximation, Euler equations, ideal fluids, viscous fluids, diffusion of heat, sound waves, hydrostatics, flow around a solid body, the Bernoulli equation, the Reynolds number and other dimensionless parameters used to describe a flow, compressible and incompressible flow, supersonic and subsonic flow, shock waves (with example: supernovae), surface & internal gravity waves, vortices and vorticity, waves in a rotating body of fluid (example: earth's atmosphere), stability analysis (examples: convection, shear instability), the magnetohydrodynamics equations, Alfven waves, flux conservation, flux freezing, magnetic pressure and tension, force-free fields, reconnection (with example: solar corona), angular momentum transport and the magneto-rotational instability (example: astrophysical discs).
  Literature: E.Landau & E.Lifshitz, "Fluid mechanics" Pergamon Press 1987
S.Shore, "Astrophysical hydrodynamics: an introduction", Wiley-VCH 2007
A. Choudhuri, "The physics of fluids and plasmas", Cambridge 1998
Lecture notes at http://www.astro.uni-bonn.de/~jonathan/misc/hydro_notes.pdf
Lecture notes at http://www.astro.uni-bonn.de/~jonathan/misc/astroMHDnotes.pdf
  Comments: This course is designed primarily for astrophysicists, but no prior knowledge of astrophysics is required and students in the physics masters programme are welcome.
6944  Binary stars
Mo 11-13, HS Astronomie
  Instructor(s): R. Izzard
  Prerequisites: The introductory astronomy courses and Stellar Evolution (6935=astro 811 Langer)
  Contents: Most stars in our Galaxy are gravitationally bound in binary star systems. Many of these are close enough to each other to interact at some point in their lives with consequences that include the formation of X-ray binaries, millisecond pulsars, thermonuclear novae, supernovae and gamma-ray bursts.

This course will start by introducing the many types of observed binary-star systems. A discourse on orbital dynamics will lead into issues of gravitational interaction such as tides. In the most extreme case this leads to mass-transfer between the components of the binary star. The stability of mass transfer is crucial to understanding, for example, the origin of type Ia supernovae.

A unique aspect of this course will be the study of populations of binary stars. These include chemically peculiar stars which are keys to understanding both stellar physics and the evolution of our Galaxy.
  Literature: Interacting Binary Stars (J.E.Pringle and R.A.Wade; Cambridge University Press) ISBN 0-521-26608-4.
An Introduction to Close Binary Stars (R.W.Hilditch; Cambridge University Press) ISBN 0-521-79800-0.
Evolutionary Processes in Binary and Multiple Stars (P.P.Eggleton; Cambridge University Press) ISBN-10 0-521-85557-8 / ISBN-13 978-0-521-85557-0.
6931  Astrophysics of galaxies
Do 15-18, HS Astronomie
Exercises: 2 hrs. in groups
  Instructor(s): P. Kroupa, I. Georgiev
  Prerequisites: The following lectures ought to have been attended: Introduction to Astronomy I and II, Stars and Stellar Evolution, The Interstellar Medium
  Contents: The types of galaxies;

foundations of stellar dynamics (Jeans equations, relaxation time);

elliptical galaxies;

disk galaxies;

stellar populations in galaxies;

formation of galaxies;

dwarf galaxies (normal dwarfs, tidal dwarfs, ultra-compact dwarfs);

galactic nuclei and their supermassive black holes;

dark matter and alternatives to Newtonian gravity.

  Literature: Galactic dynamics by J.Binney and S.Tremaine (1987, Princeton University Press);

Galactic Astronomy by J.Binney and M.Merrifield (1998, Princeton University Press);

Galaxies in the Universe by L.Sparke and J.Gallagher (2000, Cambridge University Press)
  Comments: This course is worth 6 credit points. To achieve these attendance of the lectures is required and the exam needs to be passed.

This is course astro821 in the Masters of Astrophysics programme.
6962 Seminar on modern cosmology
Mo 11-13, HS 0.05
  Instructor(s): C. Porciani, T. Reiprich, P. Schneider, O. Wucknitz
  Prerequisites: Knowledge of basic cosmology at the level of course 6936
  Contents: Selected recent papers in various fields of cosmology will be presented by the students in seminar form. Students will attend all talks and get an updated overview of current research in cosmology.
6964  Seminar on stars, stellar systems, and galaxies
Di 16-18, R. 3.010
  Instructor(s): P. Kroupa, J. Pflamm-Altenburg
  Prerequisites: Vordiplom or Bachelor in physics;
The lecture "Stars and Stellar Evolution" (astro811);
The lecture "Astrophysics of Galaxies" (astro821)
  Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics;
current and preliminary research results by AIfA members and guests on the above topics.
  Literature: Latest astro-ph pre-prints, or recently published research papers.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research.

This is course astro893 in the Masters of Astrophysics programme.
6966  Seminar on theoretical dynamics
Fr 14-16, R. 3.010
  Instructor(s): P. Kroupa, J. Pflamm-Altenburg
  Prerequisites: Pre-diplom or BSc in physics.
  Contents: Formation of planetary and stellar systems;
Stellar populations in clusters and galaxies;
Processes governing the evolution of stellar systems.
  Literature: Current research papers and own research.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

Students and post-docs present the current state of their own research to a critical audience.

Start date: after arrangement
6967 Seminar zur Öffentlichkeitsarbeit: Astronomie vor Ort
2-stündig, n. Vereinbarung
  Dozent(en): N. Ben Bekhti, M. Geffert
  Erforderliche Vorkenntnisse: Grundkenntnisse Astronomie
z.B. aus Einführungsvorlesungen
  Inhalt: Ziel des Seminars ist Grundkenntnisse in der Öffentlichkeitsarbeit im Fach Astronomie zu erwerben und praktisch auszuprobieren. Im Rahmen des Seminars sollen eigene Beiträge zur Öffentlichkeitsarbeit (z.B. Workshops für Kinder, Powerpoint Präsentationen, etc.) vorbereitet und durchgefuehrt werden.
Insbesondere ist die Planung von Projekten für den NRW Tag Anfang Oktober
  Literatur: Bücher /Artikel werden zu Beginn des Seminars bekannt gegeben.
  Bemerkungen: Erstes Treffen zur Vorbereitung des Seminars ist am 6. April um 18 Uhr im
Argelander-Institut für Astronomie (AIfA)
Auf dem Hügel 71, 53121 Bonn
(Treffpunkt Eingangshalle)
Dort werden die weíteren Termine festgesetzt
Wer an diesem Datum nicht kann, möchte sich bitte mit
M. Geffert (geffert@astro.uni-bonn.de) in
Verbindung setzen
6968 Seminar on strong gravitational lensing and lens modelling
Fr 17-19, R. 3.19
  Instructor(s): O. Wucknitz u.M.
  Prerequisites: basic understanding of astronomy and gravitational lenses in particular
  Contents: Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling with particular emphasis on radio lenses and interferometry observations.
  Comments: The format of this seminar is a mixture of more formal presentations and informal discussions.
6970  Seminar on galaxy clusters
Do 15-17, R. 0.18
  Instructor(s): T. Reiprich
  Prerequisites: Introduction to astronomy.
  Contents: The students will report about up to date research work on galaxy clusters based on scientific papers.
  Literature: Will be provided.
  Comments: Room numbers have changed in the building. This seminar will take place in room 0.006 (formerly 0.18).
6971 Seminar on stellar evolution and hydrodynamics
Do 13.30-15, R. 3.19
  Instructor(s): J. Braithwaite, N. Langer
  Prerequisites: Bachelor in Physics (or equivalent)
The lecture "Stars and Stellar Evolution"
  Contents: The latest work on stellar physics will be discussed. There is some emphasis on work currently being undertaken by researchers in Bonn, but in addition the latest results from elsewhere will be presented and discussed.
  Literature: Latest astro-ph pre-prints or other recent research papers.
6961  Seminar on astronomy and astrophysics
Mo 14.00-15.30, HS Astronomie
  Instructor(s): T. Reiprich, F. Bertoldi, R. Izzard, J. Kerp, U. Klein, M. Kramer, P. Kroupa, N. Langer, M. Massi, K. Menten, C. Porciani, P. Schneider, G. Weigelt, O. Wucknitz
  Prerequisites: Lectures: Introduction to astronomy I and II.
  Contents: Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, galaxy clusters, quasars, cosmology).
  Literature: Current research papers.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminars of the other students and (b) gives a successful presentation. The certificate can be picked up in the office of Ms. Kristina Sörgel on the second floor (room 2.004) at the end of the semester.

The students will learn to hold a formal but pedagogical presentation about a subject of current international research.

The possible topics will be presented on the first lecture day.