.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Sommersemester 2018

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

physics639  Advanced Topics in High Energy Particle Physics
Tu 10-12, Th 12-14, HS, HISKP
  Instructor(s): Ph. Bechtle, N. Wermes
  Prerequisites: BSc Degree
physics611: Particle Physics (Master Course)
not alone sufficient: Nuclear and Particle Physics (Bachelor Course)
  Contents: see comments:
in particular:
- CKM and PMNS flavor matrices
- mixing angles and their determination
- neutrino physics
- quark flavor physics
- matter-antimatter oscillations
- CP violation
- rare decays
  Literature: M. Thomson, Modern Particle Physics – Cambridge University Press (2013) (here: Chapter 12, 13)

V. Barger, D. Marfatia, K. Whisnant, The physics of neutrinos, Princeton University Press, 2012.

further literature will be given at the start of the lecture
  Comments: The topics in this lecture generally address particle physics beyond "physics611"
except "Collider Physics (LHC, ILC)" (although quite some of the topics are or have been done at colliders).
The focus will be on "flavor physics", i.e. lepton and quark flavors.
physics636  Advanced Theoretical Particle Physics
Tu 16-18, Th 10, HS I, PI
  Instructor(s): M. Drees
  Prerequisites: Theoretical Particle Physics 1; some knowledge of quantum field theory is expected in some parts of the lecture.
  Contents: Neutrino oscillations and neutrino masses;
Grand Unified Theories;
  Literature: G. Ross, Grand Unified Theories, discusses both supersymmetric and non-supersymmetric GUTs.
Drees, Godbole and Roy, Theory and Phenomenology of Sparticles, gives an in-depth treatment of supersymmetry, with emphasis on phenomenological aspects.
Peskin and Schroeder, An Introduction to Quantum Field Theory, treats the underlying formalism, but also contains many particle physics applications
physics712  Advanced Electronics and Signal Processing
Tu 9, Th 10-12, HS, HISKP
  Instructor(s): P.-D. Eversheim, H. Krüger
  Prerequisites: Mandatory: Electronics lab course
Recommended: Electronics for Physicists
  Contents: This lecture addresses basic concepts, techniques, and electronics necessary to identify and handle relevant events in complex data streams or detector arrays, respectively. Advantages and limits of analogue and digital electronics will be explained and can be experienced by means of three major topics.

  1. Hands on experiment at the Bonn Isochronous Cyclotron: Set up electronics to identify whether an ejectile was a Proton, Deuteron, 3He or α particle. Set up electronics to discriminate Neutrons from Gammas by pulse shape.

  2. Understand the potential of Digital Signal Processors (DSP). The hard- and software aspects are discussed and demonstrated by means of an experimental DSP-board. The demonstrations will focus on digital signal conditioning and filtering.

  3. Hands on course in Field Programmable Gate Array (FPGA) programming.

  Comments: The experiments at the Bonn Isochronous Cyclotron will take place on 4 afternoons
physics713 Particle Detectors and Instrumentation
Tu 14-16, We 14, Konferenzraum II, PI 1.049, PI
  Instructor(s): H. Schmieden, T.C. Jude
  Prerequisites: Completed B.Sc. in Physics, with experience in quantum mechanics, atomic- and nuclear physics
  Contents: Quark structure of mesons and baryons, nucleon excitation; electromagnetic probes, electron
accelerators, photon beams, relativistic kinematics, interaction of radiation with matter, detectors for
photons, leptons and hadrons;
Main issue is the hands-on laboratory course: setup of detectors and experiment at ELSA,
and a real experiment will be performed to observe excited states of the proton through meson
production with high-energetic photon beams.
  Literature: B. Povh, K. Rith, C. Scholz, F. Zetsche; Teilchen und Kerne (Springer, Heidelberg 6. Aufl. 2004)
Perkins; Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000)
W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
physics718 Programming in Physics and Astronomy with C++ or Python
  Instructor(s): T. Erben
  Prerequisites: The course does not require prior programming knowledge. Basic knowledge on Unix/Linux is beneficial.
  Contents: The Python-version of the course is offered in SS2018

  • A thorough introduction to scientific computing with the easy-to-learn, high-level programming language Python

  • Introduction to numpy-arrays (primary Python-data structure for
    scientific computing)

  • Introduction to the scientific-python modules (scipy)

  • Interactive work / development with Python

  • Plotting and visualization of scientific data with python (the matplotlib module)

  • Version control / collaborative software development

  Literature: All required course materials will be made available online

  1. The lectures are hands-on with every student working on an own computer in the CIP-Pools of the Physics and Astronomy departments

  2. The course is offered two times:

    • Mi., 13:00 - 16:00 (astronomy department by Thomas Erben)

    • Fr., 08:00 - 11:00 (physics department by Oliver Cordes)

  3. Prior registration for the course is necessary (limited number of computers in the CIP-Pools)

physics721  BCGS Intensive Week (Advanced Topics in Hadron Physics)
Hadron Physics Summer School (HPSS 2018), September 24th-28th 2018, JUFA Jülich
  Instructor(s): C. Hanhart, B. Kubis, A. Nogga, A. Thiel, A. Wirzba et al.
  Prerequisites: The school aims at advanced undergraduate and graduate students in the field of hadron physics or accelerator physics.
  Contents: The school comprises lectures and working groups (from which each participant joins one) on theoretical, experimental, and accelerator aspects. The focus is on current issues in hadron physics with emphasis on current and future programs at the accelerators COSY (Jülich), ELSA (Bonn), LHC (CERN), CEBAF (Jefferson Lab), BEPC (Beijing) and FAIR (Darmstadt) featuring experiments like PANDA, Crystal Barrel, LHCb, CLAS, BESIII, Belle II as well as the search for electric dipole moments of charged particles in storage rings (JEDI) and neutrino physics.
  Comments: Registration deadline is May 15, 2018. The registration form is available on the webpage.
physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Montag, den 9.4.18, 9 c.t.,
Hörsaal IAP, 3. Stock Wegelerstr. 8

Seminartermine ab 16.4.18
physics754 General Relativity and Cosmology
Mo 10-12, We 11, HS, HISKP
  Instructor(s): B. Metsch
  Prerequisites: physik221 and physik321 (Theoretical Physics I and II)
optional: some differential geometry
  Contents: Relativity principle;
Gravitation in relativistic mechanics;
Curvilineal coordinates;
Curvature and energy-momentum tensor;
Einstein-Hilbert action and the equations of the gravitational field;
Black holes;
Gravitational waves;
Time evolution of the universe;
Friedmann-Robertson-Walker solutions.
  Literature: [1] L.D. Landau, J.M. Lifschitz: Lehrbuch der theoretischen Physik (Band 2) Klassische Feldtheorie, Harri Deutsch, ISBN 3817113277 (also available in English: Classical Field Theory);
[2] C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation, W.H. Freeman, ISBN 0-7167-0344-0;
[3] B.F. Schutz: A first course in general relativity, Cambridge University Press, ISBN 0-521-27703-5;
[4] S. Weinberg: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley, ISBN 0-471-92567-5;
physics773  Physics in Medicine: Fundamentals of Medical Imaging
Mo 10-12, We 12, SR I, HISKP
  Instructor(s): K. Lehnertz
  Prerequisites: BSc
  Contents: Introduction to physical imaging methods and medical imaging
(1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission
computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI
(1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect
(1b) applications: analysis of structure and function
(2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging
(2a) Basics of neuroelectromagnetic activity, source models
(2b) instrumentation, detectors, SQUIDs
(2c) signal analysis, source imaging, inverse problems, applications
  Literature: 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl.
2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
5. W. Buckel: Supraleitung, VCH Weinheim, 1993
6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998
More literature will be offered
physics652  Seminar on Quantum Technology
Mo 14-16, HS, IAP
  Instructor(s): D. Meschede
  Prerequisites: Lectures on Quantum Physics (basic, advanced)
Lectures on Modern Atomic and Optical Physics
  Contents: We will select topics on the following general subjects:

Quantum Sensing
Quantum Communication
Quantum Simulation
Quantum Computing
  Literature: Overview:
Michael Raymer: Quantum Physics What Everyone Needs to Know
Oxford University Press

European Commission
  Comments: We expect a preparation (and maturation) period of at least 6 weeks. It is thus advisable to select and start your topic as early as possible.
physics656 Seminar Medical Physics: Physical Fundamentals of Medical Imaging
Mo 14-16, SR I, HISKP
  Instructor(s): K. Lehnertz
  Prerequisites: Bsc
  Contents: Physical Imaging Methods and Medical Imaging of Brain Functions
Emission Computer Tomography (PET)
- basics
- tracer imaging
- functional imaging with PET
Magnetic Resonance Imaging (MRI)
- basics
- functional MRI
- diffusion tensor imaging
- tracer imaging
Biological Signals: Bioelectricity, Biomagnetism
- basics
- recordings (EEG/MEG)
- source models
- inverse problems
  Literature: 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik,
Siemens, 3. Aufl.
3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin,
4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
5. Ed. S. Webb: The Physics of Medical Imaging, Adam
  Comments: Time: Mo 14 - 16 and one lecture to be arranged
6820 Research Internship / Praktikum in der Arbeitsgruppe
Setup and test of detector components and MC simulations for the COMPASS@CERN and BGO-OD@ELSA experiments. Data analysis using ROOT
pr., ganztägig, Dauer ca. 2-4 Wochen, Zeit n.V., PI
  Instructor(s): H. Schmieden
  Prerequisites: Physik V (Nuclear and Particle Physics) or equivalent
  Contents: Setup and test of detector components and Monte Carlo simulations for the COMPASS@CERN and
BGO-OD@ELSA experiments. Data analysis using ROOT.
  Comments: Duration 2 – 4 weeks (part time), by individual agreement
6826 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.
Introduction to time series analysis techniques, neuronal modelling, complex networks.
Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:
Prof. Dr. K. Lehnertz
email: klaus.lehnertz@ukb.uni-bonn.de
6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

6838 Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin
pr, Kliniken Venusberg
(Teilnahme am Seminar "Medizinische Physik" erforderlich)
  Instructor(s): K. Lehnertz, C. Berg, P. David, F. Träber, P. Trautner
  Contents: Continuation of topics addressed in the seminar; examples of medical imaging in prenatal diagnosis, radiology, and neurosciences.
  Comments: Dates to be arranged during the semester.
astro847 Optical Observations
Fr 11-13, Raum 0.012, AIfA
Exercises: 1 hr. by appointment
  Instructor(s): H. Hildebrandt, T. Schrabback
  Prerequisites: Astronomy introduction classes
  Contents: Optical CCD and near infrared imaging, conducting and planning observing runs,
detectors, data reduction, catalogue handling, astrometry, coordinate systems,
photometry, spectroscopy, photometric redshifts, basic weak lensing data
analysis, current surveys, ground-based data versus Hubble Space Telescope
observations, how to write observing proposals.

Practical experience is gained by obtaining and analysing multi-filter CCD
imaging observations of galaxy clusters using the 50cm telescope on the AIfA
rooftop, as well as the analysis of professional data from the archive.
  Literature: Provided upon registration.
  Comments: The class has a strong focus on hands-on observations and data analysis. It
should be particularly useful for students who consider conducting a master's
thesis project which involves the analysis of optical imaging data from
professional telescopes (e.g. wide-field imaging data or Hubble Space Telescope
astro851  Stellar and solar coronae
Th 13-15:15, Raum 0.01, MPIfR
Exercises: 1 hr. by appointment
  Instructor(s): M. Massi
T Tauri (young stellar systems not yet in Main Sequence) and RS CVn systems (evolved stellar systems that already left the Main Sequence), although very diverse systems, have similar flare activities observed at radio and X-ray wavelengths.

The flares in both systems are several orders of magnitude stronger than those of the Sun. The origin of this activity, defined "coronal activity", depends on the convective zone, the rotation, the formation and dissipation of magnetic fields. In general terms: This is a mechanism of the same type as on the Sun, but enforced by the binary nature of these systems.

In these lectures we will explore a link between the amplification of initial magnetic fields by dynamo action in several rotating systems ( Sun, binary systems and accretion discs around black holes) and the release of magnetic energy into a corona where particles are accelerated.

Together with the basic theory there will be as well illustrated the latest progress in the research on stellar coronal emission derived from recent space missions and high-resolution radio observations.
  Literature: The Solar Corona.
Golub and Pasachoff