.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Sommersemester 2022

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

physics637  Advanced Theoretical Hadron Physics
We 14-17, SR I, HISKP
  Instructor(s): S. Krieg, A. Nogga, D. Rönchen
  Prerequisites: Advanced Quantum Mechanics
Preferable: Quantum Field Theory 1, Theoretical Hadron Physics 1

  1. Notion of an effective field theory

  2. Effective Chiral Lagrangian

  3. Wess-Zumino-Witten Lagrangian

  4. Chiral Perturbation Theory at tree level: overview

  5. Meson sector: loops, renormalization, LECs, power counting

  6. Symmetries and Ward identities

  7. Ward identities in QCD

  8. Anomalies

  9. Lattice QCD

  10. Relativistic baryon ChPT; the breakdown of the power counting

  11. HB ChPT, infrared regularization, EOMS scheme


  1. J.F. Donoghue, E. Golowicz and B.R. Holstein, Dynamics of the Standard
    Model, Cambridge. University
    Press (Cambridge, 1992).

  2. S. Scherer, M.R. Schindler, A Primer for Chiral Perturbation Theory,
    Springer (Heidelberg, 2012).

  3. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory,
    Perseus (Reading, 1995).

  4. C. Gattringer, C. B. Lang, Quantum Chromodynamics on the Lattice, Springer
    (Heidelberg, 2010)

physics718 Programming in Physics and Astronomy with C++ or Python
Fr 8-10, HS 2, CP1-HSZ
  Instructor(s): T. Erben
  Prerequisites: The course does not require prior programming knowledge. Basic knowledge on Unix/Linux, especially on the Unix command line is beneficial but not necessary. We will recap necessary concepts of Unix in the first weeks of the term.
  Contents: The Python-version of the course is offered in SS2022
The course addresses necessary programming skills that any physics or astronomy student needs during their master or PhD theses.

Amongst others, we cover the following topics

  • A thorough introduction to scientific computing with the easy-to-learn, high-level programming language Python

  • Introduction to numpy-arrays (primary Python-data structure for
    scientific computing)

  • Introduction to scientific-python modules widely used in physics and astronomy (scipy, astropy)

  • Interactive work / development with Python

  • Plotting and visualization of scientific data with python (the matplotlib module)

  • Version control / collaborative software development

  Literature: All necessary course materials and online tutorials will be made available on eCampus and on github.

  Comments: Please read the follwing carefully

  • Registration on eCampus and Basis is required.

  • The course can be attended in person (Fr. 08:00-10:00; HS2; Hörsaalzentrum Poppelsdorf) or online (lectures are recorded).

  • An own laptop or desktop computer is required to attend the exercise classes and to do programming tasks. You only need a webbrowser and a PDF reader as an absolute minimum to follow the course within our Online systems.

  • Depending on the development of the Corona pandemic, we might switch entirely to online lectures via YouTube.

  • We offer mandatory erercise classes in person or online

  • The course has no final exam but the credit points and the marks are earned with mandatory homework exercises and with physics programming projects during the term. Hence, the work-load of the course during the term is higher than for other four credit-point classes.

physics738  Lecture on Advanced Topics in Quantum Optics: Quantum Science and Spectroscopy
We 10-12, HS, IAP
  Instructor(s): M. Weitz
  Prerequisites: Bachelor courses completed.
  Contents: This lecture provides insight into several applications of quantum sciences in the field of optical, atomic, and molecular physics.

- atom-light interaction
- three-level atoms
- linear and nonlinear spectroscopy methods
- high resolution spectroscopy, spectroscopy of the hydrogen atom
- spectroscopy with cold atoms
- atomic interferometry
- optical quantum gases
  Literature: R. Loudon; The quantum theory of light (Oxford University Press, 2000)
M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge, 1997)
D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition, 2005)
W. Demtröder, Laser Spectroscopy 1 and 2 (Springer, Berlin, 2014/2015)
  Comments: Lecture: 2 Teaching hours (2 Semesterwochenstunden)
Exercises: 1 Teaching hour (1 Semesterwochenstunde)
The exercises take place every other week in two hour blocks.
physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Freitag, den 1.4.2022, um 9 c.t.
(Achtung: Geänderter Termin!)
Die Vorbesprechung findet vor Beginn des Vorlesungszeitraums statt.
Falls Sie aus terminlichen Gründen nicht an der Vorbesprechung teilnehmen
können, kontaktieren Sie bitte den Dozenten.

Die Vorbesprechung findet Online per Zoom statt, wobei Zugangsdaten auf ecampus zu finden werden sind.

Seminartermine ab 18.4.2022

physics743  Platforms for Quantum Technologies
Block course March 3rd - 23rd 2022
  Instructor(s): Y. Ando (UoC), H. Bluhm, M. Müller (FZJ), J. Schmitt
  Prerequisites: Quantum mechanics, Statistical Mechanics, Basic concepts and mathematical formalism of quantum
mechanics, Basic concepts from quantum optics and laser physics, Condensed-matter physics, Many-body
physics, Superconductivity, Second-quantisation formalism of the BCS theory
  Contents: Basics of quantum information processing: qubits, quantum operations, measurements, circuit
model, quantum teleportation, quantum algorithms (Deutsch, Grover, Shor); AMO (atomic, molecular,
optical) platforms:
quantum simulators: gases of cold atoms, optical lattices,
ground state and excitation dynamics; optical quantum systems; Solid state platforms: charge
and electron spin qubits; superconducting qubits; qubit dynamics and control; decoherence; quantum
supremacy; Topological platforms: topological insulators and superconductors; braiding;
Majorana qubit design; topological surface code; Quantum error correction and topological codes:
few-qubit error correcting codes, fault-tolerance, topological surface code and logical qubits
  Literature: - Nielsen & Chuang, Quantum Computation and Quantum Information, (Cambridge U Press, 2010)
- M. Sato and Y. Ando, Topological superconductors: a review, Rep. Prog. Phys. 80, 076501 (2017)
- Harald Ibach and Hans Lüth, Solid State Physics (Springer, 2010)
- Fuxiang Han, A Modern Course in Quantum Theory of Solids (World Scientific, 2013)
- C. J. Pethick and H. Smith, Bose-Einstein condensation in Dilute Gases (Cambridge U Press, 2002)
  Comments: Registration under https://ml4q.de/platforms-for-quantum-technologies/
physics753  Theoretical Particle Astrophysics
Tu 8-10, Th 9, HS, HISKP
  Instructor(s): M. Drees
  Prerequisites: Knowledge of (relativistic) Quantum Mechanics, and basic knowledge of the Standard Model of particle physics, will be assumed. Knowledge of Quantum Field Theory and General Relativity is helpful, but not essential.
  Contents: Application of particle physics to astrophysical and cosmological problems. Emphasis will be on the physics of the early universe, basically the first few seconds (after inflation).
  Literature: Kolb and Turner, "The Early Universe", Addison Wesley
V. Mukhanov, Physical foundations of cosmology, Cambridge University Press
  Comments: Particle astrophysics works at the interface of traditional particle physics on the one hand, and astrophysics and cosmology on the other. This field has undergone rapid growth in the last one or two decades, and many fascinating questions remain to be answered.

physics767 Computational Methods in Condensed Matter Theory
Mo 12-14, Th 11, HS, IAP
  Instructor(s): D. Luitz
  Prerequisites: I recommend taking the following classes in preparation of this lecture:

Computational Physics (physics440)
Theoretical Physics III (quantum mechanics) (physics420)
Quantum Field Theory (physics755)
Advanced Theoretical Condensed Matter Physics (physics638)
  Contents: This lecture will cover the basic computational techniques to solve quantum many-body problems
in condensed matter physics. In the end, we will also use quantum computers, which are rapidly
becoming powerful tools for solving complex many-body problems.

Exact diagonalization (ED)
Krylov space eigensolvers (Lanczos, Arnoldi)
Krylov space real time evolution
Quantum Monte Carlo (QMC)
Stochastic Series Expansion (SSE)
Time evolving block decimation (TEBD)
Density Matrix Renormalization (DMRG)
Dynamical Mean Field Theory (DMFT)
Simulating Many-Body Physics on Digital Quantum Computers

  Literature: Anders W. Sandvik, "Computational Studies of Quantum Spin Systems", AIP Conference Proceedings 1297, 135 (2010); https://doi.org/10.1063/1.3518900; https://arxiv.org/abs/1101.3281

Ulrich Schollwöck, "The density-matrix renormalization group in the age of matrix product states". Annals of Physics Volume 326, Issue 1, January 2011, Pages 96-192; https://doi.org/10.1016/j.aop.2010.09.012; https://arxiv.org/abs/1008.3477

  Comments: Please register on eCampus: https://csengine.rhrz.uni-bonn.de/webconf/redir?targetclient=ilias&sourceclient=lsf&sourceid=207355
physics7506 Quark Distributions Functions
Tu 16-18, SR I, HISKP
  Instructor(s): F. Steffens, C. Urbach
  Prerequisites: Quantum Field Theory (Physics 755 or equivalent)
  Contents: Deep inelastic scattering;
Basics of the parton model;
The operator product expansion;
Factorization Theorems;
Quark distributions, Generalized quark distribtuions, Transverse Momentum quark
One loop corrections and renormalization;
Quasi-distributions and lattice computation of PDFs.
  Literature: Elliot Leader, Enrico Predazzi: An introduction to gauge theories and modern
particle physics.
Cambridge Monographs on Particle physics, Nuclear Physics and Cosmology 1996;

T. Muta: Foundations of Quantum Chormodynamics (2nd edition). World Scientific
Lecture Notes in Physics - Vol 57, 1998.

John Collins: Foundations of Perturbative QCD.
Cambridge Monographs on Particle physics, Nuclear Physics and Cosmology 2011.

Xiangdong Ji, Yu-Sheng Liu, Yizhuang Liu, Jian-Hui Zhang, and Yong Zhao: Large-
momentum effective theory, Rev. Mod. Phys. 93, 035005, 2021.
  Comments: By the end of the course, the student should be able to understand factorization
of cross sections and the origin of quark distributions,
renormalization of quark distributions, and current attempts to compute them on
the lattice.
physics773 Physics in Medicine: Fundamentals of Medical Imaging
Mo 10-12, We 12, SR I, HISKP
  Instructor(s): K. Lehnertz
  Prerequisites: BSc
  Contents: Introduction to physical imaging methods and medical imaging
(1) Physical fundamentals of transmission computer tomography (Röntgen-CT), positron emission
computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI
(1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect
(1b) applications: analysis of structure and function
(2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging
(2a) Basics of neuroelectromagnetic activity, source models
(2b) instrumentation, detectors, SQUIDs
(2c) signal analysis, source imaging, inverse problems, applications
  Literature: 1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl.
2. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol
4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
5. W. Buckel: Supraleitung, VCH Weinheim, 1993
6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998
More literature will be offered
physics775 Nuclear Reactor Physics
Fr 12-14, SR I, HISKP
  Instructor(s): W. Korten
  Prerequisites: Physik V (Nuclear and particle physics) recommended
  Contents: Physics of nuclear fission and fusion, radioactive decay, neutron flux in reactors, criticality, overview of
different reactor types, safety aspects, fuel cycle, nuclear waste problem, future aspects
  Literature: H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture)
W. M. Stacey: Nuclear Reactor Physics, (Wiley & Sons, 2007) eISBN: 978-3-527-61104-1 (the classic)
H. Frey: Kernenergie (Spinger 2020), eISBN 978-3-658-31512-2 (eine moderne Darstellung aller
wesentlicher Punkte).
  Comments: An excursion to a nuclear power plant as described in the modul hand book is not foreseen anylonger
physics652 Seminar on Photonics
We 14-16, HS, IAP
  Instructor(s): A. Bergschneider, F. Vewinger
  Prerequisites: BSc in physics
  Contents: Nobel prize winning phenomena: Their influence on modern quantum physics
In this seminar we want to shed light on the interconnection of selected Nobel prize winning findings and their influence on modern day research, with topics broadly connected to the field of quantum physics. We especially want to point out developments that took place over decades, with multiple intermediate breakthrough results, showing the evolution of a research field over time. One prominet example here is superfluidity, where the first observation (Nobel prize 1013) was followed by a theoretical explanation (Nobel price 1962), which then was carried on to new platforms (Nobel price 2001) and more refined microscopic theories (Nobel price 2003). Participants are expected to present the topic of their choice in a 30 minute talk, which is followed by a scientific discussion. In the introductory meeting, the detailed expectations are given, and each participant will be guided by a tutor during the preparation of the talk. The (highly subjective) list of topics includes
  • Quantum theory of light (Nobel prizes: 1918, 2005)
  • Matterwave interferometry (Nobel prizes: 1929, 1937, 1994)
  • Measuring quantum systems (Nobel prizes: 2005, 2012)
  • Cooling Brownian motion (Nobel prizes: 1921, 2018)
  • Tunneling phenomena in macroscopic quantum matter (Nobel prizes:1956, 1973)
  • Superfluidity in bosons (Nobel prizes: 1913, 1962, 2001, 2003)
  • Superfluidity in fermions (Nobel prizes: 1996, 2003)
  • Superconductivity (Nobel prizes: 1913, 1972)
  • High-Tc Superconductivity (Nobel prize: 1987)
  • Magnetism (Nobel prizes: 1970, 1977, 1994, 2007)
  • Fractional quantum Hall effect (Nobel prizes: 1985, 1998)
  • 2D materials (Nobel prizes: 2000, 2010)
  • Nuclear magnetic resonance (Nobel prizes: 1944, 1952, 1989)
  • g-factor of the electron (Nobel prizes: 1943, 1955, 1967, 1989)
  • Precision measurements of antihydrogen (Nobel prizes: 1936, 1959,1997, 2005)
  • Neutrino physics (Nobel prizes: 1995, 2002, 2014)
  • Quantum phase transitions (Nobel prizes: 1982, 2001, 2008, 2016)
  • Disorder and spin glases (Nobel prize: 2021)
  • Cosmic microwave background and quantum fluctuations (Nobelprizes: 1918, 1978, 2006, 2019)
  • Simulations of complex classical systems (Nobel prize: 2021)
  Literature: Original literature will be given during the seminar.
  Comments: Topics can be picked well in advance, please contact the organizers. Further information can be found on the ecampus site of the course.
physics656 Seminar Medical Physics: Physical Fundamentals of Medical Imaging
Mo 14-16, SR I, HISKP
  Instructor(s): K. Lehnertz
  Prerequisites: Bsc
  Contents: Physical Imaging Methods and Medical Imaging of Brain Functions
Emission Computer Tomography (PET)
- basics
- tracer imaging
- functional imaging with PET
Magnetic Resonance Imaging (MRI)
- basics
- functional MRI
- diffusion tensor imaging
- tracer imaging
Biological Signals: Bioelectricity, Biomagnetism
- basics
- recordings (EEG/MEG)
- source models
- inverse problems
  Literature: 1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000
2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik,
Siemens, 3. Aufl.
3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin,
4. P. Bösiger: Kernspin-Tomographie für die medizinische Diagnostik, Teubner
5. Ed. S. Webb: The Physics of Medical Imaging, Adam
  Comments: Time: Mo 14 - 16 and one lecture to be arranged
6826 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.
Introduction to time series analysis techniques, neuronal modelling, complex networks.
Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:
Prof. Dr. K. Lehnertz
email: klaus.lehnertz@ukbonn.de
6832 Praktikum in der Arbeitsgruppe: Struktur der Atomkerne - Analysemethoden für Kernspektroskopische Untersuchungen, Aufbau und Test von Detektorkomponenten, Teilnahme an Experimenten der Arbeitsgruppe / Laboratory in the Research Group: Structure of atomic nuclei - Analysis methods for nuclear spectroscopy experiments, setup and test of detector components, participation in experiments of the research group (D/E)
pr, ganztägig, vorzugsweise in den Semesterferien, Dauer ca. 4-6 Wochen, n. Vereinb., CEA Saclay, France
  Instructor(s): W. Korten
  Prerequisites: Physik V Nuclear and particle physics, affinity to experimental work.
  Contents: Participation in experiments of the Nuclear Structure and Reactions Laboratory at CEA Saclay, France, Master
thesis and PhD thesis work possible.
6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

6835 Special Topics in Quantum Field Theory: Renormalization of Gauge Theories
Blockvorlesung t.b.a.
  Instructor(s): E. Kraus
  Prerequisites: Quantum field theory (physics 755)
Basics of quantization of gauge theories
  Contents: Divergencies in 4-dimensional quantum field theories
Renormalization and subtraction of divergencies
Renormalization of gauge theories
Anomalies in gauge theories
  Literature: N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of quantized fields
(J. Wiley & Sons 1959)
M. Kaku, Quantum Field Theory (Oxford University Press 1993)
M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper
Collins Publ. 1995)
J. Collins, Renormalization (Cambridge University Press 2008)
  Comments: Lectures 13.6. - 15.6.2022 in Präsenz
Weitere Termine nach Vereinbarung online oder in Präsenz
6838 Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin
pr, Kliniken Venusberg
(Teilnahme am Seminar "Medizinische Physik" erforderlich)
  Instructor(s): K. Lehnertz, C. Berg, W. Block, P. Trautner
  Contents: Continuation of topics addressed in the seminar; examples of medical imaging in prenatal diagnosis, radiology, and neurosciences.
  Comments: Dates to be arranged during the semester if pandemic situation permits
astro8402 X-ray astronomy
Fr 13-15, Raum 0.012, AIfA
Exercises: 1 hr. by appointment
  Instructor(s): T. Reiprich
  Prerequisites: Introductory astronomy course.
  Contents: X-rays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of
modern X-ray observations of all major X-ray sources. This includes, e.g., comets and planets in our solar
system; Galactic systems like extrasolar planets, cool and hot stars, remnants of exploded stars, isolated
white dwarfs and neutron stars, cataclysmic variables, close binaries with neutron stars and black holes, hot
interstellar medium, and the Galactic center region; extragalactic X-ray sources like spiral and elliptical
galaxies, galaxy clusters, intergalactic medium, and active galactic nuclei, i.e., supermassive black holes
lurking in the centres of galaxies. The X-ray emission and absorption processes as well as current and future
space-based instruments used to carry out such observations will be described, including the eROSITA space
telescope to be launched in 2019. In the accompanying lab sessions, the participants will learn how to
download, reduce, and analyze professional X-ray data from a satellite observatory.
  Literature: A script of the lecture notes will be provided.
  Comments: Please check eCampus for up-to-date information on the format (in-person, hybrid, online, ...).
astro847 Optical Observations
Fr 11-13, Raum 0.012, AIfA
Exercises: Mo 9
  Instructor(s): T. Schrabback, M. Tewes
  Prerequisites: Astronomy introduction classes
  Contents: Optical CCD and near infrared imaging, conducting and planning observing runs,
detectors, data reduction, catalogue handling, astrometry, coordinate systems,
photometry, spectroscopy, photometric redshifts, basic weak lensing data
analysis, current surveys, ground-based data versus Hubble Space Telescope
observations, how to write observing proposals.

Practical experience is gained by obtaining and analysing multi-filter CCD
imaging observations of galaxy clusters using the 50cm telescope on the AIfA
  Literature: Provided upon registration.
  Comments: The class has a strong focus on hands-on observations and data analysis in
Python. It should be particularly useful for students who consider conducting a
master's thesis project which involves the analysis of optical imaging data from
professional telescopes (e.g. wide-field imaging data or Hubble Space Telescope
astro849 Multiwavelength observations of galaxy clusters
Mo 16-17:30, Raum 0.008, AIfA
Exercises: 1 hr. by appointment
  Instructor(s): T. Reiprich, F. Pacaud
  Prerequisites: Introductory astronomy course.
  Contents: Aims of the course:
To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In
modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at
just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive
visible component of galaxy clusters -- the intracluster gas -- cannot be detected with optical telescopes.
Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X-
ray emission from the intracluster gas. In this course, the students will acquire a synoptic, multiwavelength
view of galaxy groups and galaxy clusters.
Contents of the course:
The lecture covers galaxy cluster observations from all wavebands, radio through gamma-ray, and provides a
comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be
covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, active
supermassive black holes, cluster weighing methods, Sunyaev-Zeldovich effect, gravitational lensing, radio
halos and relics, tailed radio galaxies, and the most energetic events in the Universe since the big bang:
cluster mergers.
  Literature: Lecture script and references therein.
  Comments: Please check eCampus for up-to-date information on the format (in-person, hybrid, online, ...).
6954 Seminar on galaxy clusters
Th 15-17, Raum 0.006, AIfA
  Instructor(s): T. Reiprich
  Prerequisites: Introductory astronomy course.
  Contents: The students will report about up-to-date research work on galaxy clusters based on scientific papers.
  Literature: Will be provided.