Kommentiertes Vorlesungsverzeichnis Sommersemester 2022 
physics637  Advanced Theoretical Hadron Physics We 1417, SR I, HISKP 

Instructor(s):  S. Krieg, A. Nogga, D. Rönchen  
Prerequisites:  Advanced Quantum Mechanics Preferable: Quantum Field Theory 1, Theoretical Hadron Physics 1  
Contents: 
 
Literature: 
 
Comments:  
physics718  Programming in Physics and Astronomy with C++ or Python Fr 810, HS 2, CP1HSZ 

Instructor(s):  T. Erben  
Prerequisites:  The course does not require prior programming knowledge. Basic knowledge on Unix/Linux, especially on the Unix command line is beneficial but not necessary. We will recap necessary concepts of Unix in the first weeks of the term.  
Contents:  The Pythonversion of the course is offered in SS2022 The course addresses necessary programming skills that any physics or astronomy student needs during their master or PhD theses. Amongst others, we cover the following topics
 
Literature:  All necessary course materials and online tutorials will be made available on eCampus and on github.  
Comments:  Please read the follwing carefully
 
physics738  Lecture on Advanced Topics in Quantum Optics: Quantum Science and Spectroscopy We 1012, HS, IAP 

Instructor(s):  M. Weitz  
Prerequisites:  Bachelor courses completed.  
Contents:  This lecture provides insight into several applications of quantum sciences in the field of optical, atomic, and molecular physics. Contents:  atomlight interaction  threelevel atoms  linear and nonlinear spectroscopy methods  high resolution spectroscopy, spectroscopy of the hydrogen atom  spectroscopy with cold atoms  atomic interferometry  optical quantum gases  
Literature:  R. Loudon; The quantum theory of light (Oxford University Press, 2000) M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge, 1997) D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition, 2005) W. Demtröder, Laser Spectroscopy 1 and 2 (Springer, Berlin, 2014/2015)  
Comments:  Lecture: 2 Teaching hours (2 Semesterwochenstunden) Exercises: 1 Teaching hour (1 Semesterwochenstunde) The exercises take place every other week in two hour blocks.  
physics740  Handson Seminar: Experimental Optics and Atomic Physics Mo 911, IAP 

Dozent(en):  M. Weitz u.M.  
Erforderliche Vorkenntnisse:  Optik und Atomphysik Grundvorlesungen, Quantenmechanik  
Inhalt:  Diodenlaser Optische Resonatoren Akustooptische Modulatoren Spektroskopie Radiofrequenztechnik Spannungsdoppelbrechung und vieles mehr  
Literatur:  wird gestellt  
Bemerkungen:  Vorbesprechung am Freitag, den 1.4.2022, um 9 c.t. (Achtung: Geänderter Termin!) Die Vorbesprechung findet vor Beginn des Vorlesungszeitraums statt. Falls Sie aus terminlichen Gründen nicht an der Vorbesprechung teilnehmen können, kontaktieren Sie bitte den Dozenten. Die Vorbesprechung findet Online per Zoom statt, wobei Zugangsdaten auf ecampus zu finden werden sind. Seminartermine ab 18.4.2022  
physics743  Platforms for Quantum Technologies Block course March 3rd  23rd 2022 

Instructor(s):  Y. Ando (UoC), H. Bluhm, M. Müller (FZJ), J. Schmitt  
Prerequisites:  Quantum mechanics, Statistical Mechanics, Basic concepts and mathematical formalism of quantum mechanics, Basic concepts from quantum optics and laser physics, Condensedmatter physics, Manybody physics, Superconductivity, Secondquantisation formalism of the BCS theory  
Contents:  Basics of quantum information processing: qubits, quantum operations, measurements, circuit model, quantum teleportation, quantum algorithms (Deutsch, Grover, Shor); AMO (atomic, molecular, optical) platforms: quantum simulators: gases of cold atoms, optical lattices, ground state and excitation dynamics; optical quantum systems; Solid state platforms: charge and electron spin qubits; superconducting qubits; qubit dynamics and control; decoherence; quantum supremacy; Topological platforms: topological insulators and superconductors; braiding; Majorana qubit design; topological surface code; Quantum error correction and topological codes: fewqubit error correcting codes, faulttolerance, topological surface code and logical qubits  
Literature:   Nielsen & Chuang, Quantum Computation and Quantum Information, (Cambridge U Press, 2010)  M. Sato and Y. Ando, Topological superconductors: a review, Rep. Prog. Phys. 80, 076501 (2017)  Harald Ibach and Hans Lüth, Solid State Physics (Springer, 2010)  Fuxiang Han, A Modern Course in Quantum Theory of Solids (World Scientific, 2013)  C. J. Pethick and H. Smith, BoseEinstein condensation in Dilute Gases (Cambridge U Press, 2002)  
Comments:  Registration under https://ml4q.de/platformsforquantumtechnologies/  
physics753  Theoretical Particle Astrophysics Tu 810, Th 9, HS, HISKP 

Instructor(s):  M. Drees  
Prerequisites:  Knowledge of (relativistic) Quantum Mechanics, and basic knowledge of the Standard Model of particle physics, will be assumed. Knowledge of Quantum Field Theory and General Relativity is helpful, but not essential.  
Contents:  Application of particle physics to astrophysical and cosmological problems. Emphasis will be on the physics of the early universe, basically the first few seconds (after inflation).  
Literature:  Kolb and Turner, "The Early Universe", Addison Wesley V. Mukhanov, Physical foundations of cosmology, Cambridge University Press  
Comments:  Particle astrophysics works at the interface of traditional particle physics on the one hand, and astrophysics and cosmology on the other. This field has undergone rapid growth in the last one or two decades, and many fascinating questions remain to be answered.  
physics767  Computational Methods in Condensed Matter Theory Mo 1214, Th 11, HS, IAP 

Instructor(s):  D. Luitz  
Prerequisites:  I recommend taking the following classes in preparation of this lecture: Computational Physics (physics440) Theoretical Physics III (quantum mechanics) (physics420) Quantum Field Theory (physics755) Advanced Theoretical Condensed Matter Physics (physics638)  
Contents:  This lecture will cover the basic computational techniques to solve quantum manybody problems in condensed matter physics. In the end, we will also use quantum computers, which are rapidly becoming powerful tools for solving complex manybody problems. Exact diagonalization (ED) Krylov space eigensolvers (Lanczos, Arnoldi) Krylov space real time evolution Quantum Monte Carlo (QMC) Stochastic Series Expansion (SSE) Time evolving block decimation (TEBD) Density Matrix Renormalization (DMRG) Dynamical Mean Field Theory (DMFT) Simulating ManyBody Physics on Digital Quantum Computers  
Literature:  Anders W. Sandvik, "Computational Studies of Quantum Spin Systems", AIP Conference Proceedings 1297, 135 (2010); https://doi.org/10.1063/1.3518900; https://arxiv.org/abs/1101.3281 Ulrich Schollwöck, "The densitymatrix renormalization group in the age of matrix product states". Annals of Physics Volume 326, Issue 1, January 2011, Pages 96192; https://doi.org/10.1016/j.aop.2010.09.012; https://arxiv.org/abs/1008.3477  
Comments:  Please register on eCampus: https://csengine.rhrz.unibonn.de/webconf/redir?targetclient=ilias&sourceclient=lsf&sourceid=207355  
physics7506  Quark Distributions Functions Tu 1618, SR I, HISKP 

Instructor(s):  F. Steffens, C. Urbach  
Prerequisites:  Quantum Field Theory (Physics 755 or equivalent)  
Contents:  Deep inelastic scattering; Basics of the parton model; The operator product expansion; Factorization Theorems; Quark distributions, Generalized quark distribtuions, Transverse Momentum quark distributions; One loop corrections and renormalization; Quasidistributions and lattice computation of PDFs.  
Literature:  Elliot Leader, Enrico Predazzi: An introduction to gauge theories and modern particle physics. Cambridge Monographs on Particle physics, Nuclear Physics and Cosmology 1996; T. Muta: Foundations of Quantum Chormodynamics (2nd edition). World Scientific Lecture Notes in Physics  Vol 57, 1998. John Collins: Foundations of Perturbative QCD. Cambridge Monographs on Particle physics, Nuclear Physics and Cosmology 2011. Xiangdong Ji, YuSheng Liu, Yizhuang Liu, JianHui Zhang, and Yong Zhao: Large momentum effective theory, Rev. Mod. Phys. 93, 035005, 2021.  
Comments:  By the end of the course, the student should be able to understand factorization of cross sections and the origin of quark distributions, renormalization of quark distributions, and current attempts to compute them on the lattice.  
physics773  Physics in Medicine: Fundamentals of Medical Imaging Mo 1012, We 12, SR I, HISKP 

Instructor(s):  K. Lehnertz  
Prerequisites:  BSc  
Contents:  Introduction to physical imaging methods and medical imaging (1) Physical fundamentals of transmission computer tomography (RöntgenCT), positron emission computer´tomography (PET), magnetic resonance imaging (MRI) and functional MRI (1a) detectors, instrumentation, data acquisition, tracer, image reconstruction, BOLD effect (1b) applications: analysis of structure and function (2) Neuromagnetic (MEG) and Neuroelectrical (EEG) Imaging (2a) Basics of neuroelectromagnetic activity, source models (2b) instrumentation, detectors, SQUIDs (2c) signal analysis, source imaging, inverse problems, applications  
Literature:  1. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl. 2. P. Bösiger: KernspinTomographie für die medizinische Diagnostik, Teubner 3. Ed. S. Webb: The Physics of Medical Imaging, Adam Hilger, Bristol 4. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000 5. W. Buckel: Supraleitung, VCH Weinheim, 1993 6. E. Niedermeyer/F.H. Lopes da Silva; Electroencephalography, Urban & Schwarzenberg, 1998 More literature will be offered  
Comments:  
physics775  Nuclear Reactor Physics Fr 1214, SR I, HISKP 

Instructor(s):  W. Korten  
Prerequisites:  Physik V (Nuclear and particle physics) recommended  
Contents:  Physics of nuclear fission and fusion, radioactive decay, neutron flux in reactors, criticality, overview of different reactor types, safety aspects, fuel cycle, nuclear waste problem, future aspects  
Literature:  H. Hübel: Reaktorphysik (Vorlesungsskript, available during the lecture) W. M. Stacey: Nuclear Reactor Physics, (Wiley & Sons, 2007) eISBN: 9783527611041 (the classic) H. Frey: Kernenergie (Spinger 2020), eISBN 9783658315122 (eine moderne Darstellung aller wesentlicher Punkte).  
Comments:  An excursion to a nuclear power plant as described in the modul hand book is not foreseen anylonger  
physics652  Seminar on Photonics We 1416, HS, IAP 

Instructor(s):  A. Bergschneider, F. Vewinger  
Prerequisites:  BSc in physics  
Contents:  Nobel prize winning phenomena: Their influence on modern quantum physics In this seminar we want to shed light on the interconnection of selected Nobel prize winning findings and their influence on modern day research, with topics broadly connected to the field of quantum physics. We especially want to point out developments that took place over decades, with multiple intermediate breakthrough results, showing the evolution of a research field over time. One prominet example here is superfluidity, where the first observation (Nobel prize 1013) was followed by a theoretical explanation (Nobel price 1962), which then was carried on to new platforms (Nobel price 2001) and more refined microscopic theories (Nobel price 2003). Participants are expected to present the topic of their choice in a 30 minute talk, which is followed by a scientific discussion. In the introductory meeting, the detailed expectations are given, and each participant will be guided by a tutor during the preparation of the talk. The (highly subjective) list of topics includes
 
Literature:  Original literature will be given during the seminar.  
Comments:  Topics can be picked well in advance, please contact the organizers. Further information can be found on the ecampus site of the course.  
physics656  Seminar Medical Physics: Physical Fundamentals of Medical Imaging Mo 1416, SR I, HISKP 

Instructor(s):  K. Lehnertz  
Prerequisites:  Bsc  
Contents:  Physical Imaging Methods and Medical Imaging of Brain Functions Emission Computer Tomography (PET)  basics  tracer imaging  functional imaging with PET Magnetic Resonance Imaging (MRI)  basics  functional MRI  diffusion tensor imaging  tracer imaging Biological Signals: Bioelectricity, Biomagnetism  basics  recordings (EEG/MEG)  SQUIDs  source models  inverse problems  
Literature:  1. O. Dössel: Bildgebende Verfahren in der Medizin, Springer, 2000 2. H. Morneburg (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik, Siemens, 3. Aufl. 3. H. J. Maurer / E. Zieler (Hrsg.): Physik der bildgebenden Verfahren in der Medizin, Springer 4. P. Bösiger: KernspinTomographie für die medizinische Diagnostik, Teubner 5. Ed. S. Webb: The Physics of Medical Imaging, Adam  
Comments:  Time: Mo 14  16 and one lecture to be arranged  
6826  Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie 

Instructor(s):  K. Lehnertz u.M.  
Prerequisites:  basics of programming language  
Contents:  This laboratory course provides insight into the current research activities of the Neurophysics group. Introduction to time series analysis techniques, neuronal modelling, complex networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.  
Literature:  Working materials will be provided.  
Comments:  Contact: Prof. Dr. K. Lehnertz email: klaus.lehnertz@ukbonn.de  
6832  Praktikum in der Arbeitsgruppe: Struktur der Atomkerne  Analysemethoden für Kernspektroskopische Untersuchungen, Aufbau und Test von Detektorkomponenten, Teilnahme an Experimenten der Arbeitsgruppe / Laboratory in the Research Group: Structure of atomic nuclei  Analysis methods for nuclear spectroscopy experiments, setup and test of detector components, participation in experiments of the research group (D/E) pr, ganztägig, vorzugsweise in den Semesterferien, Dauer ca. 46 Wochen, n. Vereinb., CEA Saclay, France 

Instructor(s):  W. Korten  
Prerequisites:  Physik V Nuclear and particle physics, affinity to experimental work.  
Contents:  Participation in experiments of the Nuclear Structure and Reactions Laboratory at CEA Saclay, France, Master thesis and PhD thesis work possible.  
Literature:  
Comments:  
6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E) pr, ganztägig, 26 Wochen n. Vereinb., IAP 

Dozent(en):  M. Weitz u.M.  
Erforderliche Vorkenntnisse:  Optik und Atomphysik Grundvorlesungen, Quantenmechanik  
Inhalt:  Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, BoseEinsteinKondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.  
Literatur:  wird gestellt  
Bemerkungen:  Homepage der Arbeitsgruppe: https://www.qo.unibonn.de/  
6835  Special Topics in Quantum Field Theory: Renormalization of Gauge Theories Blockvorlesung t.b.a. 

Instructor(s):  E. Kraus  
Prerequisites:  Quantum field theory (physics 755) Basics of quantization of gauge theories  
Contents:  Divergencies in 4dimensional quantum field theories Renormalization and subtraction of divergencies Renormalization of gauge theories Anomalies in gauge theories  
Literature:  N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of quantized fields (J. Wiley & Sons 1959) M. Kaku, Quantum Field Theory (Oxford University Press 1993) M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper Collins Publ. 1995) J. Collins, Renormalization (Cambridge University Press 2008)  
Comments:  Lectures 13.6.  15.6.2022 in Präsenz Weitere Termine nach Vereinbarung online oder in Präsenz  
6838  Praktische Übungen zur Bildgebung und Bildverarbeitung in der Medizin pr, Kliniken Venusberg (Teilnahme am Seminar "Medizinische Physik" erforderlich) 

Instructor(s):  K. Lehnertz, C. Berg, W. Block, P. Trautner  
Prerequisites:  
Contents:  Continuation of topics addressed in the seminar; examples of medical imaging in prenatal diagnosis, radiology, and neurosciences.  
Literature:  
Comments:  Dates to be arranged during the semester if pandemic situation permits  
astro8402  Xray astronomy Fr 1315, Raum 0.012, AIfA Exercises: 1 hr. by appointment 

Instructor(s):  T. Reiprich  
Prerequisites:  Introductory astronomy course.  
Contents:  Xrays are emitted from regions where the Universe is hot and wild. The lecture will provide an overview of modern Xray observations of all major Xray sources. This includes, e.g., comets and planets in our solar system; Galactic systems like extrasolar planets, cool and hot stars, remnants of exploded stars, isolated white dwarfs and neutron stars, cataclysmic variables, close binaries with neutron stars and black holes, hot interstellar medium, and the Galactic center region; extragalactic Xray sources like spiral and elliptical galaxies, galaxy clusters, intergalactic medium, and active galactic nuclei, i.e., supermassive black holes lurking in the centres of galaxies. The Xray emission and absorption processes as well as current and future spacebased instruments used to carry out such observations will be described, including the eROSITA space telescope to be launched in 2019. In the accompanying lab sessions, the participants will learn how to download, reduce, and analyze professional Xray data from a satellite observatory.  
Literature:  A script of the lecture notes will be provided.  
Comments:  Please check eCampus for uptodate information on the format (inperson, hybrid, online, ...).  
astro847  Optical Observations Fr 1113, Raum 0.012, AIfA Exercises: Mo 9 

Instructor(s):  T. Schrabback, M. Tewes  
Prerequisites:  Astronomy introduction classes  
Contents:  Optical CCD and near infrared imaging, conducting and planning observing runs, detectors, data reduction, catalogue handling, astrometry, coordinate systems, photometry, spectroscopy, photometric redshifts, basic weak lensing data analysis, current surveys, groundbased data versus Hubble Space Telescope observations, how to write observing proposals. Practical experience is gained by obtaining and analysing multifilter CCD imaging observations of galaxy clusters using the 50cm telescope on the AIfA rooftop.  
Literature:  Provided upon registration.  
Comments:  The class has a strong focus on handson observations and data analysis in Python. It should be particularly useful for students who consider conducting a master's thesis project which involves the analysis of optical imaging data from professional telescopes (e.g. widefield imaging data or Hubble Space Telescope observations).  
astro849  Multiwavelength observations of galaxy clusters Mo 1617:30, Raum 0.008, AIfA Exercises: 1 hr. by appointment 

Instructor(s):  T. Reiprich, F. Pacaud  
Prerequisites:  Introductory astronomy course.  
Contents:  Aims of the course: To introduce the students into the largest clearly defined structures in the Universe, clusters of galaxies. In modern astronomy, it has been realized that a full understanding of objects cannot be achieved by looking at just one waveband. Different phenomena become apparent only in certain wavebands, e.g., the most massive visible component of galaxy clusters  the intracluster gas  cannot be detected with optical telescopes. Moreover, some phenomena, e.g., radio outbursts from supermassive black holes, influence others like the X ray emission from the intracluster gas. In this course, the students will acquire a synoptic, multiwavelength view of galaxy groups and galaxy clusters. Contents of the course: The lecture covers galaxy cluster observations from all wavebands, radio through gammaray, and provides a comprehensive overview of the physical mechanisms at work. Specifically, the following topics will be covered: galaxies and their evolution, physics and chemistry of the hot intracluster gas, relativistic gas, active supermassive black holes, cluster weighing methods, SunyaevZeldovich effect, gravitational lensing, radio halos and relics, tailed radio galaxies, and the most energetic events in the Universe since the big bang: cluster mergers.  
Literature:  Lecture script and references therein.  
Comments:  Please check eCampus for uptodate information on the format (inperson, hybrid, online, ...).  
6954  Seminar on galaxy clusters Th 1517, Raum 0.006, AIfA 

Instructor(s):  T. Reiprich  
Prerequisites:  Introductory astronomy course.  
Contents:  The students will report about uptodate research work on galaxy clusters based on scientific papers.  
Literature:  Will be provided.  
Comments: 