.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Wintersemester 2008/2009

Logo der Fachgruppe Physik-Astronomie der Universität Bonn

6791  Laser Physics and Quantum Optics
Tu 9, Th 10-12, HS, IAP
Exercises: 1 hr in groups
  Instructor(s): M. Fiebig
  For term nos.: 5 and higher
  Hours per week: 3 + 1
  Prerequisites: Optics and some wave physics and quantum mechanics
  Contents: Basics: electromagnetic radiation, two-level systems, inversion, rate equations, amplification
Light confinement: resonators, waveguides, modes
Laser pulses: Q switch, pulse compression, ultrafast optics
Types of lasers: solid state, semiconductor, gas, dye, fibre, distributed feedback, free electrons
Special topics: nonlinear optics, laser cooling – Bose Einstein condensation, magnetooptics

  Literature: D. Meschede: "Optik, Licht und Laser", Teubner 2005
D. Meschede: "Optics, Light and Lasers", Wiley-VCH 2003
F. K. Kneubühl, M. W. Sigrist: "Laser", Teubner 1999
Y. R. Shen, "The Principles of Nonlinear Optics", Wiley 2002
R. Loudon, "The Quantum Theory of Light", Clarendon 1973
A. K. Zvezdin, V. A. Kotov: "Modern Magnetooptics & Magnetooptical Materials", Taylor/Francis 1997
More literature in the course of the lecture
  Comments: Since this is a combined master and diploma lecture it may be given in German or English. This will be decided during the first lesson.
6792  Advanced Particle Physics (formerly Physics of and with Leptons)
Tu 12-14, Th 8-10, HS, IAP
including 1 hr exercises in groups
  Instructor(s): J. Kroseberg, U. Thoma
  For term nos.: 6 or higher
  Hours per week: 3+1
  Prerequisites: Introductory Particle Physics + Quantum Mechanics
  Contents: This is the first of two independent and complementary advanced courses on experimental particle
physics, deepening and widening the topics covered in the basic "Particle Physics" lecture.

Topics are selected from the following areas: electroweak interactions, Higgs physics, neutrino physics,
QCD, structure and interactions of hadrons, flavor physics, looking beyond the standard model.
  Literature: Examples of recommended textbooks:

  • Halzen, Martin: Quarks and Leptons (Wiley 1984)

  • Perkins: Introduction to High Energy Physics (Cambridge 2000)

  • Seiden: Particle Physics, A Comprehensive Introduction (Addison-Wesley 2004)

  • Griffith: Introduction to Elementary Particle Physics (Wiley 2008)

More specific suggestions for further reading will be given during the course.

  Comments: Tutorials will be held Thu 8-10 every other week (alternating with two-hour lectures).
6793  Statistical Methods of Data Analysis
We 14-16, HS, IAP
Exercises: 1 hr in groups
  Dozent(en): J. Pretz
  Fachsemester: >4
  Wochenstundenzahl: 2+1
  Erforderliche Vorkenntnisse: Mathematics of first four semesters

  • description of data

  • probability distributions

  • Errors

  • Fitting of Parameters

  • testing of hypothesis

  • Introduction to Data Analysis Framework ROOT
  Literatur: R. Barlow, "Statistics, A Guide to the Use of Statistical Methods in the
Physical Sciences", John Wiley Verlag
S. Brandt, "Datenanalyse", BI, Wissenschaftsverlag
  Bemerkungen: Lecture will be given, depending on the audience,
in German or in English
6795 Theoretical Particle Physics
Tu 14-16, Th 12, HS I, PI
Exercises: 2 hrs in groups
  Instructor(s): M. Drees
  For term nos.: 7 and up
  Hours per week: 3 for lectures plus 2 for tutorials
  Prerequisites: Knowledge of relativistic Quantum Mechanics (Dirac eq., Klein-Gordon eq.) will be assumed. An experimental introduction to particle physics, and a course in Quantum Field Theory, will be helpful, but not essential.
  Contents: Theoretical introduction into the Standard Model of particle physics: QED, QCD, electroweak interactions, spontaneous gauge symmetry breaking.
  Literature: Halzen and Martin, "Quarks and Leptons", is a classic.
Aitchison and Hey, "Gauge THeories in Particle Physics", 2nd edition, gives a modern introduction, with emphasis on applications.
Peskin and Schroeder, "Quantum Field Theory", is a field theory book that also contains a fair amount of phenomenological applications.
  Comments: This lecture is targeted at students interested in theoretical and/or experimental particle physics. Some results from Quantum Field Theory will be used; they will be motivated, but not properly derived (that's what the QFT classes are for). The emphasis will be on phenomenology and "model building". (Nearly) all speculations about extensions of the Standard Model will be deferred to the course Theoretical Particle Physics 2, to be given in the summer term 2009.
6797 Theoretical Condensed Matter Physics
We 12, Fr 10-12, HS, HISKP
Exercises: 2 hrs in groups
first lecture: We 22.10.08
  Instructor(s): H. Monien
  For term nos.: 6
  Hours per week: 3
  Prerequisites: Theoretical Physics I-IV

  Contents: This lecture gives an introduction to the theoretical description of the the structure and
elementary excitations in quantum fluids and solids. The emphasis is on theoretical concepts.
  Literature: Elementary: N. W. Ashcroft and N. D. Mermin, "Solid State Physics"
A. Altland & B. Simons, "Condensed Matter Field Theory",
Cambridge University Press 2006
J. M. Ziman: "Principles of Solid State Physics", Verlag Harry Deutsch 75
C. Kittel: "Quantum Theory of Solids", J. Wiley 63
Deutsch: G. Czycholl:"Theoretische Festkörperphysik", Vieweg 2000
  Comments: This course teaches the basic concepts of condensed matter theory. The macroscopic
manifestations of quantum mechanics lead to surprising properties of novel materials.
This area of research has had and has an enormous practical impact (transistor, integrated
circuits, LED, magnetic information storage).
6798  Physics of Particle Detectors
Tu 10-12, Th 14-16, SR I, HISKP
including 1 hr exercises in groups
  Instructor(s): V. Büscher, E. von Törne
  For term nos.: 5 or higher
  Hours per week: 3
  Prerequisites: Particle Physics or nuclear physics would be useful but is not a requirement; some knowledge of electronics.
  Contents: Chapter 1 Introduction
Chapter 2 Interaction of Particles with Matter
Chapter 3 Detectors for Ionizing Particles: Wirecambers, Silicon Detectors and TPCs
Chapter 4 Cherenkov Radiation
Chapter 5 Transition Radiation
Chapter 6 Scintillation Detectors
Chapter 7 Calorimeters
Chapter 8 General Purpose Detectors in Particle Physics
  Literature: W.R. Leo, Techniques for Nuclear and Particle Physics Experiments
C. Grupen, Teilchendetektoren
D. Green, The Physics of Particle Detectors
K. Kleinknecht, Detektoren für Teilchenstrahlung
T. Ferbel, Experimental Techniques in High Energy Nuclear and Particle Physics

Special literature for sub topics
-- Rossi, Fischer, Rohe, Wermes, "Pixel Detectors: from Fundamentals to Application"
-- R. Wigmans, Calorimetry: Energy Measurement in Particle Physics
-- G. Lutz, Semiconductor Radiation Detectors
  Comments: In this lecture the students will learn what the underlying physics of particle and radiation detectors is and how these detectors work. This lecture is a requirement for students whose main interest is experimental particle physics. It is also useful for students with an interest in medical imaging detectors.

This class includes a visit to the SiLab (Physikalisches Institut, Bonn).
6799  Photonics
Tu 10-12, Th 16-18, HS, IAP
including 1 hr exercises in groups
  Dozent(en): K. Buse, F. Vewinger
  Fachsemester: 5
  Wochenstundenzahl: 3+1
  Erforderliche Vorkenntnisse: Grundkurswissen Optik und Elektrodynamik

Ground course knowledge optics and electrodynamics
  Inhalt: Die Vorlesung „Photonik“ führt in die moderne Optik ein, in der die Photonen – analog zu den Elektronen in der Elektronik – die entscheidende Rolle spielen. Genauso wie in der Elektronik kommt es zunächst darauf an, die Komponenten zu verstehen, aus denen dann ganze Systeme zusammengestellt werden können. Im ersten Teil der Vorlesung werden daher Lichtquellen, optische Bauteile zur Beeinflussung der Lichtstrahlen, Lichtwellenleiter und Detektoren im Detail vorgestellt. Daran schließen dann Anwendungen an, die gruppiert sind in: „Licht und Information“, „Metrologie“ und „optische Materialbearbeitung“. Von Telekommunikationsnetzen über Laser-Radar bis hin zum Einsatz von Lasern in der Medizin werden Einsatzgebiete der Photonik aus physikalischem Blickwinkel vorgestellt. Das Ziel der Veranstaltung ist, dass die Teilnehmerinnen und Teilnehmer in die Lage versetzt werden, selbständig mit Hilfe der Photonik anwendungsnahe Problemstellungen kreativ zu lösen.

The course „Photonics“ provides an introduction into the modern optics in which the photons play – in close analogy to the electrons in electronics – the key role. Like in electronics one first needs to know which components exist that can be used to build complete systems. Thus in the first part of the course light sources, optical parts for manipulation of light, optical waveguides, and detectors will be presented in detail. In the second part of the course, from a physical perspective applications will be highlighted that are related to light and information, optical metrology, and optical material processing. Some examples that will be addressed are telecommunication networks, laser radar, and medical applications. The overall goal of the course is to enable its participants to solve on their own in a creative way a broad range of problems employing photonics.
  Literatur: Ein Skript wird zur Verfügung gestellt.
Copies of lecture notes will be provided.

Ergänzende Literatur/Further literature:

A. Yariv, P. Yeh, "Photonics", Oxford University Press, 6th Edition, 2006, ISBN 019517946-3, ca. 57 €

B. E. A. Saleh, M. C. Teich, „Fundamentals of Photonics“, 2007, ISBN 0471358320, ca. 110 €

J. W. Goodman, "Introduction to Fourier Optics", Roberts & Co Publishers, 3rd Edition, 2005, ISBN 0974707724, ca. 60 €

D. Meschede, “Optics, Light, and Lasers”, 2nd Edition, ISBN 352740628X, 75 €

F. Träger (Editor), “Handbook of Lasers and Optics”, Springer, 2007, ISBN 0387955798, ca. 270 €
  Bemerkungen: Die Vorlesung ist ideal geeignet für Bachelor-Studierende ab dem 5. Semester als auch für Diplomstudierende mit Interesse an der Optik.

The course is ideally suited for Bachelor students of semester 5 or higher as well as for Diploma students with interest in optics.
6811  Environmental Physics & Energy Physics
Th 13:30-16, HS 118, AVZ I
  Instructor(s): B. Diekmann
  For term nos.: Thursday, 13.30- 15.00
  Hours per week: 2
prediploma or corresp. state of knowledge in BsC study, basics in thermodynamics would be helpful

Vordiplom, Teilnahme an 'Physikalische Grundlagen der Energieerzeugung'
im Wintersemester 2006/7 wäre wünschenswert, ebenso Vorkenntnisse in Thermodynamik
  Contents: not vet defined (wait til mid august)
Lecture will be given in cooperation with Prof Reichelt
  Literature: Diekmann,B., Heinloth,K.: Physikalische Grundlagen der Energieerzeugung, Teubner 1997
Heinloth, K., Die Energiefrage, Vieweg 1999
Thorndyke,W., Energy and Environment, Addison Wesley 1976
Schönwiese,C.D., Diekmann,B., Der Treibhauseffekt , DVA 1986
Boeker,E.,von Grondelle,R., Physik und Umwelt,Vieweg, 197

Have a look into previous courses via 'ecampus' with an acces given
by Bernd Diekmann on authorized request
  Comments: Die Vorlesung ist keine VANG Vorlesung im Sinne der DPO, ein begleitendes Seminar wird im SS09 als SANG
Veranstalktung angeboten und kann somit den für die Prüfungszulasssung erforderlichen Schein liefern.

Im Masterstudiengang wird auf Wunsch eine Abschlussklausur zur Erlangung der CP’s angeboten.

6812  Physics in Medicine I: Fundamentals of Analyzing Biomedical Signals
Mo 9-11, Fr 9, SR I, HISKP
Exercises: 1 hr in groups
  Instructor(s): K. Lehnertz
  For term nos.: 5-8
  Hours per week: 3+1
  Prerequisites: Vordiplom
  Contents: Introduction to the theory of nonlinear dynamical systems
- regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals
- selected examples of nonlinear dynamical systems and their characteristics (model and real world systems)
- selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality)
Time series analysis
- linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function,
autoregressive modeling
- univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents,
entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity
- nonlinear analysis of biomedical time series (EEG, MEG, EKG)
  Literature: - M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988.
- H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York,
- E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993
- H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
ed., 2003
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
Cambridge University Press, Cambridge UK, 2001
  Comments: Location: Seminarraum I, HISKP
Beginning: Mo, Oct 13, 9:00 ct
6800  Quantum Chromodynamics
Mo 14-16, We 9, SR I, HISKP
Exercises: 2 hrs in groups
  Instructor(s): H.-W. Hammer
  For term nos.: 6 and higher
  Hours per week: 3+2
  Prerequisites: Quantum Mechanics I+II

  1. Introduction (motivation for Quantum Chromodynamics (QCD), brief introduction to quantum field theory, non-abelian gauge theories)

  2. Elements of QCD (Lagrangian, Feynman rules, ...)

  3. Renormalization (1-loop calculations, renormalization group, ...)

  4. Perturbative QCD (structure functions, jets, ...)

  5. Special Topics (instantons, large-Nc expansion, lattice QCD, QCD phase diagram, ...)

  Literature: M.E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Westview Press 1995)
S. Weinberg; The Quantum Theory of Fields, Vol. II (Cambridge University Press 1995)
J.F. Donoghue et al.; Dynamics of the Standard Model (Cambridge University Press 1995)
F.J. Yndurain; The Theory of Quark and Gluon Interactions (Springer 2006)
  Comments: This course gives a broad introduction into the fundamental theory of the strong interaction: Quantum Chromodynamics.
An elementary understanding of quantum field theory is useful but the main concepts will be reviewed in the introductory section of the lecture.
6802 Superstring Theory
We 10-12, SR II, HISKP, Fr 13, HS I, PI
Exercises: 2 hrs in groups
  Instructor(s): H.-P. Nilles
  For term nos.: 7
  Hours per week: 3 + 2
  Prerequisites: Quantum field theory
Elementary particle physics
General relativity
  Contents: Conformal field theory
Bosonic string theory
Superstring theory
Heterotic string
D=10 and 11 supergravity
Compactification of extra dimensions
  Literature: D. Luest, S. Theisen, Lectures on Stong Theory, Springer, NY, 1989
M. Green, J. Schwarz, E. Witten, Superstring Theory 1+2, CUP, 1987
J. Polchinski, String Theory 1+2, CUP, 2005
  Comments: Lecture will be held in english or german at the discretion of the audience,
In the MSc. catalogue the lecture belongs to Module
physics700 Elective Advanced lectures (physics730 Theoretical Physics).
The first lecture will take place on Friday, Oct. 17th at 1 pm
6803  Effective Field Theories for Nuclear and Particle Physics
We 14-17, SR I, HISKP
Exercises: 2 hrs in groups
  Instructor(s): C. Hanhart, A. Wirzba
  For term nos.: 6 and higher
  Hours per week: 3+2
  Prerequisites: Quantum Mechanics I+II

  1. The concept of effective field theories (EFT)

  2. EFTs for the standard model:

    • Chiral perturbation theory for mesons

    • Heavy-quark effective theory

  3. The pion-nucleon system

  4. The few-nucleon system

  Literature: Stefan Scherer, Introduction to Chiral Perturbation Theory, in J.W. Negele and E.W. Vogt (eds.): Adv. Nucl. Phys. vol. 27 (2003) 277-538, arXiv:hep-ph/0210398;

see also: Stefan Scherer, Matthias R. Schindler, "A Chiral Perturbation Theory Primer", arXiv:hep-ph/0505265.

J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the standard model (Cambridge University Press, UK, 1992);

H. Georgi, Weak Interactions and Modern Particle Theory (Benjamin/Cummings, Ca, 1984), www.people.fas.harvard.edu/~hgeorgi/weak.pdf

M.E. Peskin & D.V. Schroeder, An Introduction to Quantum Field Theory (Addison Wesley, Reading, Ma, 1995).

  Comments: This course gives an introduction to the concept of effective
field theories in general. Examples in the second part of the
course cover current issues in hadron physics. Here perturbative
and non-perturbative systems are discussed.

An elementary understanding of quantum field theory is useful but the main concepts will be reviewed in the introductory section of the lecture.
6804 Exactly Solvable Statistical Mechanics Models
Fr 10-12, HS 116, AVZ I
  Instructor(s): G. Schütz
  For term nos.: from 7
  Hours per week: 2
  Prerequisites: Thermodynamics, Quantum Mechanics
  Contents: Basic Statistical Mechanics Reminder, Critical Phenomena, Ising model,
6-vertex model, Heisenberg quantum spin chain, Bethe ansatz, Stochastic
particle systems
  Literature: R.J. Baxter, Exactly solved models in Statistical Mechanics
G.M. Schuetz, Exactly solvable models for many-body systems far from equilibrium
(in: C. Domb and J.L. Lebowitz (eds.) Phase Transitions and Critical Phenomena, Vol. 19,
  Comments: NOTICE: First Lecture on 7 Nov 2008.
6805  General Relativity and Cosmology
Tu 12, Th 14-16, HS I, PI
Exercises: 2 hrs in groups
  Instructor(s): S. Förste
  For term nos.: from 5th
  Hours per week: 3 + 2
  Prerequisites: Theoretical Physics I and II,
Basic Lectures in Mathematics.
  Contents: Special Relativity (recap),
Riemannian Geometry,
Einstein's Equation,
Linearised Gravity,
Gravitational Collapse and Black Holes,
  Literature: H. Stephani: General Relativity (Cambridge University Press), also available in German from publisher DVW.

L.D. Landau, E.M. Lifshits: Course of Theoretical Physics, Volume 2: Classical Theory of Fields (Butterworth-Heinemann), also available in German from publisher Harry Deutsch.

S. Weinberg: Gravitation and Cosmology (J. Wiley & Sons 1972).

P.K. Townsend: Black Holes, arXiv:gr-qc/9707012.
6807 Experiments on the Structure of Hadrons
Fr 10-12, SR II, HISKP
Exercises: 1 hr in groups
  Instructor(s): K.-T. Brinkmann
  For term nos.: 7 and up
  Hours per week: 2+1
  Prerequisites: Basics of quantum mechanics, atomic and nuclear physics
  Contents: Discoveries in hadron physics
Asymptotic freedom and confinement
Mass generation
Multiplets, symmetries
Quark models
Formation and decay of resonances
Baryon spectroscopy
Hadronic molecules and exotic states
Meson photoproduction
  Literature: Perkins, Introduction to High Energy Physics (Cambridge University Press 4. Aufl. 2000)
K. Gottfried, F. Weisskopf; Concepts of Particle Physics (Oxford University Press 1986)
A. Thomas, W. Weise, The Structure of the Nucleon (Wiley-VCH, Weinheim, 2001)
6808  Accelerator Physics
We 12, Th 10-12, SR I, HISKP
Lecture on Th, 16.10.08 will take place 10-12 in HS, HISKP
Exercises: 1 hr in groups
  Dozent(en): W. Hillert, R. Maier
  Fachsemester: 5-8
  Wochenstundenzahl: 3+1
  Erforderliche Vorkenntnisse: Mechanics, Electrodynamics
  Inhalt: Die neuere experimentelle Physik basiert zum Teil auf dem Einsatz von
Teilchenbeschleunigern, insbesondere im Bereich der Hochenergiephysik, der
Materialforschung und der Erforschung der Substruktur der Atomkerne und der
Hadronen. Durch die aktuellen wissenschaftlichen Fragestellungen wurden und
werden auch weiterhin ständig gesteigerte Herausforderungen an den Betrieb und
die Entwicklung von Teilchenbeschleunigern gestellt, was zum Einsatz
modernster Technologien aus einer Vielzahl von physikalischen Bereichen führte
(als Beispiele mögen hier der Aufbau einer ca. 27 km langen, fast vollständig
supraleitenden Anlage am CERN / Genf oder die Planung eines 1 Angström
Röntgenlasers am DESY / Hamburg dienen). Im Zuge dieser Entwicklungen und
systematischen Untersuchungen der physikalischen Vorgänge in Beschleunigern
entstand die Beschleunigerphysik als eigenständiger Fachbereich der
angewandten Physik.

Die vorliegende Vorlesung ist eine Einführung in die Beschleunigerphysik. Sie
gibt einen Überblick über die verschiedenen Funktionsweisen unterschiedlicher
Beschleunigertypen und führt, neben einer physikalischen Behandlung der
wichtigsten Subsysteme (Teilchenquellen, Magnete, Hochfrequenzresonatoren), in
die transversale und longitudinale Strahldynamik ein.

More recent experimental physics is partly based on the use of particle
accelerators, especially in high energy physics, materials research and
exploration of the substructure of atomic nuclei and hadrons. Due to the
current scientific questions, more and more demanding challenges have been and
still are posed to the operation and development of particle accelerators,
thus leading to the use of state-of-the-art high technology taken from a
multitude of fields in physics (as examples may be cited the construction of a
27 km, almost entirely superconducting facility at CERN / Geneva or the
planning of a 1 Angström X-ray laser at DESY / Hamburg). In the course of
these developments and systematic investigation of the physical processes in
particle accelerators, particle accelerator physics emerged as a stand-alone
field of applied physics.

The present lecture is meant as an introduction into particle accelerator
physics. It provides an overview of the various functional principles of
different accelerator types and provides, alongside a physical treatment of
the most important subsystems (particle sources, magnets, resonant cavities),
an introduction into transversal and longitudinal orbit dynamics.

Inhaltsverzeichnis / Table of Contents:

  • Einführung / Introduction

  • Überblick über Beschleunigertypen / Elementary Overview

  • Bauelemente von Teilchenbeschleunigern / Subsystems of Particle Accelerators

  • Lineare Strahloptik / Linear Beam Optics

  • Kreisbeschleuniger / Circular Accelerators

  Literatur: H. Wiedemann, Particle Accelerator Physics, Springer 1993, Berlin, ISBN 3-540-56550-7

D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN 0-471-55163-5

F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, Springer 1996, Berlin, ISBN 3-540-61238-6

K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4

S. Y. Lee, Accelerator Physics (Second Edition), World Scientific, Singapore 2004, ISBN 981-256-200-1 (pbk)

  Bemerkungen: Es besteht die Möglichkeit, den Lernstoff durch detaillierte Besichtigungen
und praktische Studien an der Beschleunigeranlage ELSA des Physikalischen
Instituts zu veranschaulichen und zu vertiefen.

Zu dieser Vorlesung wird ein Script im Internet (pdf-Format, Englisch) zur
Verfügung gestellt. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)

The opportunity will be offered to exemplify and deepen the subject matter by
detailed visits and practical studies at the institute of physics’
accelerator facility ELSA.

Accompanying the lecture, a script (pdf-format, english) will be provided on
the internet. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)
6809 Physik mit Antiprotonen / Physics with Antiprotons (D/E)
Mi 14-16, SR II, HISKP
  Instructor(s): A. Gillitzer
  For term nos.: >= 5
  Hours per week: 2
  Prerequisites: Quantum Mechanics, Atomic Physics, Nuclear Physics
  Contents: The lecture will have a large overlap with the physics topics related to high
and low energy antiprotons at the future international FAIR facility at
Darmstadt. The contents are:
- antiproton production, cooling, and storage
- antiproton-proton interaction
- antiproton-nucleus interaction
- antiprotonic atoms
- anti-hydrogen
- hadron physics with antiprotons, e.g. charm production, glueballs, hybrids
- CP violation, matter-antimatter asymmetry in the universe
  Literature: References to review articles on the respective subtopics will be given during
the lecture.
Lecture notes will be made available.
  Comments: The language is English or German, depending on the preference of the audience.
6814 Seminar zu aktuellen Fragen der experimentellen Elementarteilchenphysik
Mo 11-13, Zi. 300, PI
  Instructor(s): V. Büscher, K. Desch, J. Kroseberg, E. von Törne, N. Wermes
  For term nos.: ab 7.
  Hours per week: 2
  Prerequisites: Elementarteilchenphysik / Particle Physics
  Contents: Topics for the complex

Physics and Detectors at Hadron Colliders

Detection Techniques and Detectors

Higgs Physics

Physics of the Top-Quark

Supersymmetry Searches

  Literature: will be distributed
  Comments: Seminar will be in English or German or mixed, depending on attendance
6816  Seminar über Ereignisbasierte Datenanalyse eines Experiments zur Pion-Photoproduktion an ELSA / Seminar on Event-by-event data analysis of a pion-photoproduction experiment at ELSA
Mo 15-17, Bespr.R., HISKP
Vorbesprechung Mo., den 13.10.
  Instructor(s): R. Beck, H. Schmieden
  For term nos.: 7
  Hours per week: 2
  Prerequisites: nuclear and/or elementary particle physics, basic C or C++ skills,
student experiment on pion production at ELSA recommended but not
  Contents: method of event-by-event data analysis using the results of a
student experiment on pion production at ELSA, basic analysis
steps, prompt and accidental coincidences, kinematic reconstruction
and kinematic cuts, particle identification, invariant mass, angular
distributions, excitation function, Monte Carlo simulation.
  Literature: Leo: Techniques for Nuclear and Particle Physics Experiments,
Brandt: Statistical and Computational Methods in Data Analysis.
  Comments: Based on data from a Student experiment performed within the practical
course of last terms lecture physics713 "Particle Detectors and
Instrumentation: A Pion-Production Experiment at ELSA".
Participation in this previous course is advantageous but not compulsory.

Language German/English will be chosen at the discretion of the audience.
6817 Seminar über Aktuelle Themen der Angewandten Optik und Kondensierten Materie / Seminar on Recent Topics in Applied Optics and Condensed Matter Physics (D/E)
Di 14-16, HS, IAP
  Dozent(en): K. Buse, M. Fiebig, D. Haertle, D. Meschede, F. Vewinger, M. Weitz, A. Widera
  Fachsemester: 5. und höher
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: Grundkurse Physik im 1.-4. Semester
  Inhalt: Das Seminar hat zwei Ziele: Die tiefere Einarbeitung in Themen, die dicht an aktueller Forschung auf dem Gebiet der Angewandten Optik liegen und außerdem die praktische Übung der Erstellung und Präsentation exzellenter Vorträge. Bei einer Vorbesprechung stellen die Betreuer Themen vor, aus denen sich die aktiven Teilnehmer des Seminars je eins auswählen.

Hinweis: Early Birds können sich schon jetzt Themen aus der unten stehenden Liste aussuchen.

Dazu stellen die Betreuer dann Literatur sowie Tipps und Hilfsmittel zur Literaturbeschaffung zur Verfügung. Nach einer Einarbeitung in das Gebiet werden dann Aufbau und Struktur des Vortrags mit dem Betreuer diskutiert. Es folgt eine Besprechung der erstellten Präsentationsfolien. Dann wird der Vortrag in dem Seminar präsentiert. Neben den aktiven Teilnehmern können dazu gern weitere Studierende kommen. Die Vortragsdauer soll 45-60 Minuten betragen. Im Anschluss an den Vortrag findet eine fachliche Diskussion statt. Es folgt ein zweiter Teil der Diskussion, bei dem nur die aktiven Teilnehmer des Seminars anwesend sind. Dabei wird der Vortrag im Hinblick auf technische Aspekte der Präsentation analysiert. Nach dem Vortrag wird dann noch eine Kurz-Zusammenfassung des behandelten Themas erstellt und im Internet veröffentlicht. Vorträge können auf Deutsch oder auf Englisch gehalten werden.

Die Vorbereitung des Vortrags ist arbeitsintensiv. Es wird dringend geraten, bereits am Anfang des Semesters unmittelbar nach der Wahl eines Themas mit der Einarbeitung in die Materie zu beginnen.

In diesem Semester stehen voraussichtlich unter anderem folgende Themen zur Auswahl:
- Licht an der Leine: Ultradünne Lichtleitfasern (D. Meschede)
- Cavity-QED: Mischzustände von Licht und Materie (D. Meschede)
- Mehr als Bits: Qubits und Quantenregister (D. Meschede)
- Erzeugung von Laserlicht in Flüstergalerie-Resonatoren (D. Haertle)
- Neue Displaytechnologien für den Außeneinsatz (D. Haertle)
- Kleinstmögliche Kristalle: Nanokristalle (D. Haertle)
- Die Physik von Neutronensternen im Labor: Atomare Fermigase (M. Weitz)
- Künstliche Festkörper: Optische Gitter (M. Weitz)
- Licht langsamer als ein Radfahrer: Dunkelzustände und elektromagnetisch induzierte Transparenz (M. Weitz)
- Metamaterialien: Künstliche Kristalle mit erstaunlichen optischen Eigenschaften (M. Fiebig)
- Neue Wege der Datenspeicherung: Multiferroika für die Festplatte von morgen? (M. Fiebig)
- Gequetschtes Licht: Messung besser als die Unschärferelation? (F. Vewinger)
- Elektronenbewegung in Echtzeit: Attosekundenspektroskopie (F. Vewinger)
- Licht im Labyrinth: Optimale Transmission durch streuende Medien (F. Vewinger)
- Zeitstandards der nächsten Generation: Frequenzkämme und optische Uhren (A. Widera)
- Quantenkorrelationen: Herstellung und Anwendung von verschränkten Zuständen (A. Widera)
- Auf der Grenze von klassischer zur Quantenwelt: Materiewelleninterferenz mit makroskopischen Teilchen (A. Widera)

Die Vorbesprechung mit der Ausgabe der Themen findet am Dienstag, dem 14. Oktober um 14:15 Uhr im Hörsaal des IAP statt. Interessierte Studierende können sich aber auch schon gern vorher bei Betreuern zur Vergabe eines Vortragsthemas melden.
  Literatur: wird individuell bei der Themenvergabe besprochen
  Bemerkungen: The seminar has two goals: To provide in-depth knowledge about selected actual topics in the field of applied optics and to provide practical training in preparing and presenting excellent talks. During the first meeting the organizers will present a list of topics from which each active participant of the seminar can select one.

Hint: Early birds can already contact the organizers during the lecture free time and select one topic.

For each topic literature will be provided. Starting with this material the active participants of the seminar will familiarize themselves with the content. This will be done by discussions as well as by further literature search. Based on the accumulated knowledge an outline for talks will be made and finally the viewgraphs will be prepared. Then the talk will be presented in the seminar. Typical duration of the talk is 45-60 minutes. After the talk there will be a discussion about the content. And as a second part of the discussion technical issues of the talk will be analyzed. Finally, a short written summary of the talk will be prepared and posted in the internet. Talks can be given in German or English.

Preparation of the talk is a serious amount of work. It is highly recommended to start already at the beginning of the lecture time to familiarize yourself with the content.

This term at least the following topics are available:

- Light on the String: Ultrathin Optical fibres (D. Meschede)
- Cavity-QED: Mixed States of Light and Matter (D. Meschede)
- More than Bits: Qubits and Quantum Registers (D. Meschede)
- Laser light by whispering gallery resonators (D. Haertle)
- New display technologies for outside (D. Haertle)
- The smallest crystals: Nanocrystals (D. Haertle)
- The physics of neutron stars in the lab: atomic Fermi gases (M. Weitz)
- Artificial solids: optical lattices (M. Weitz)
- light slower than a bike rider: dark states and electromagnetically induced transparency (M. Weitz)
- Metamaterials: artificial crystals with exciting optical properties (M. Fiebig)
- New types of data storage: multiferroics for the hard disk of the future? (M. Fiebig)
- Squeezed Light: Beating the Heisenberg Limit? (F. Vewinger)
- Electron dynamics in real time: Attosecond Spectroscopy (F. Vewinger)
- Light in a Maze: Optimal Transmission through disordered Media (F. Vewinger)
- Time standards of the next generation: Frequency combs and optical clocks (A. Widera)
- Quantum correlations: Production and application of entangled states (A. Widera)
- Probing the border between the classical and the quantum world: Matter wave interference with macroscopic particles (A. Widera)

A first meeting will take place Tuesday, October 14 in the IAP lecture hall at 2:15 p.m. However, interested students can contact the organizers also in advance to get already a topic for an own talk.
6818  Computer-Theoretikum und -Seminar über Analyse biomedizinischer Signale / Computational Physics Seminar on Analyzing Biomedical Signals (D/E)
Mo 14-16, SR II, HISKP
  Instructor(s): K. Lehnertz, B. Metsch
  For term nos.: 5-8
  Hours per week: 2+1
  Prerequisites: Vordiplom, basics of programming language (e.g., Fortran, C, C++, Pascal)
  Contents: Contents:
- time series: chaotic model systems, noise, autoregressive processes, real world data
- generating time series: recursive methods, integration of ODEs
- statistical properties of time series: higher order moments, autocorrelation function, power spectra,
corsscorrelation function
- state-space reconstruction (Takens theorem)
- characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic
algorithms, influencing factors, correction schemes)
- testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation
- nonlinear noise reduction
- measuring synchronisation and interdependencies
  Literature: - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
ed., 2003
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
Cambridge University Press, Cambridge UK, 2001
- WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press
- see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/
  Comments: Location: Seminarraum II, HISKP
Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo October 13
6842 Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E)
pr, ganztägig, Dauer n. Vereinb., PI
  Dozent(en): H. Dutz, S. Goertz u.M.
  Fachsemester: 7 oder höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik
  Inhalt: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.
Thema: Forschung und Entwicklung rund ums Polarisierte Target

Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten.
  Literatur: wird gestellt
  Bemerkungen: Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten.

Depending on the students' preferences the course is given in German or in English.
6845  Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Instructor(s): H. Krüger, V. Büscher, E. von Törne, N. Wermes u.M.
  For term nos.: 7 oder höher
  Hours per week: 4 Wochen ganztägig
  Prerequisites: Vorlesungen über Detektoren und Elektronik
  Contents: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Detectors and Micro-Electronics
  Literature: will be handed out
  Comments: early aplication necessary

Prof. v. Törne, Prof. Wermes

further contacts: Dr. H. Krüger, Dr. F. Hügging
6846  Praktikum in der Arbeitsgruppe: Proton-Proton-Kollisionen am LHC / Research Internship: Proton-Proton-Collisions at LHC (D/E)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Dozent(en): V. Büscher, E. von Törne, N. Wermes u.M.
  Fachsemester: 7 oder höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Vorlesungen über Teilchenphysik
  Inhalt: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.

Thema: Analyse von Daten an Experimenten der Hochenergiephysik (ATLAS,D0)

Ablauf (abhängig von der Anzahl der Interessenten, siehe unten):

1. Woche: Vorträge von Mitgliedern der Arbeitsgruppe an die Studenten

2. Woche: Vorträge der Studenten über das zu bearbeitende Thema nach Einarbeitung

1.+ 2. Woche Einarbeitung

ab 2. Woche bis 4. Woche: Durchführung eines kleinen Projektes
  Literatur: wird gestellt
  Bemerkungen: Langfristige Anmeldung ist erforderlich, bei

Prof. Wermes, Prof. von Törne

Der oben skizzierte Ablauf ist erst ab 5 Studenten moeglich. Bei Einzelteilnehmern

erfolgt eine Einbindung in die Arbeitsgruppe mit einer kleineren speziellen Aufgabe.

weitere Ansprechpartner: Dr. J. Kroseberg, Dr. M.A. Pleier, Dr. M. Cristinziani
6847 Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group:
Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E)
pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Instructor(s): I. Brock u.M.
  For term nos.: 7 and above
  Hours per week: Full time, 3-4 weeks. Applications to brock@physik.uni-bonn.de
  Prerequisites: Introductory particle physics course
  Contents: Introduction to the current research activities of the group, introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques.

Depending on the students' preferences the course is given in German or in English.
6848 Praktikum in der Arbeitsgruppe: Detektorentwicklung und Teilchenphysik an einem Elektron-Positron-Linearcollider / Laboratory in the Research Group: Detector Development and Particle Physics at an Electron-Positron Linear Collider (D/E)
pr, ganztägig, ca. 4 Wochen n. Vereinb., vorzugsweise in den Semesterferien, PI
  Dozent(en): K. Desch u.M.
  Fachsemester: 7 und höher
  Wochenstundenzahl: 4 Wochen ganztägig
  Erforderliche Vorkenntnisse: Vorlesungen über Teilchenphysik
  Inhalt: In einem 4 wöchigen Praktikum wird den Studierenden die Möglichkeit gegeben

anhand eines eigen kleinen Projektes einen Einblick in die Arbeitsweise

der experimentellen Hochenergiephysik zu bekommen.

Themen werden bei der Vorbesprechung vereinbart.

Möglichkeiten (Beispiele):

- Simluation von Prozessen am International Linear Collider

- Messungen an einer Zeitprojektionskammer
  Literatur: wird ausgegeben
  Bemerkungen: Eine frühe Anmeldung ist erwünscht bei Prof. Desch, Dr. P. Wienemann oder Dr.
J. Kaminski
6849 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  For term nos.: 6. semester or higher
  Hours per week: Block course, 4 weeks
  Prerequisites: basics of programming language (e.g. C, C++, Pascal)
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.

Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:

Prof. Dr. K. Lehnertz

email: klaus.lehnertz@ukb.uni-bonn.de
6852 Praktikum in der Arbeitsgruppe: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten / Laboratory in the Research Group: Setup of detector components, electronics and data acquisition, analysis of data from the Crystal Barrel Experiment at ELSA, simulation of detector components (D/E)
pr, ganztägig, 2-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., HISKP
  Dozent(en): R. Beck, M. Lang, U. Thoma
  Fachsemester: ab 6.
  Wochenstundenzahl: ganztägig, 2-4 Wochen
  Erforderliche Vorkenntnisse:  
  Inhalt: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse
von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten.
Setup of detector components, electronics and data aquisition, analysis of
data from the Crystal Barrel Experiment at ELSA, simulation of detector
components (D/E)
6854  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E)
pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
  Dozent(en): K. Buse u.M.
  Fachsemester: ab 5.
  Wochenstundenzahl: Block
  Erforderliche Vorkenntnisse: Vordiplom oder äquivalente Leistungen im Bachelor-Studium
  Inhalt: Die Arbeitsgruppe ist auf vier Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung, Flüstergaleriemodenresonatoren und Rastersondenmikroskopie ferroelektrischer Domänen. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden.

The research group is active in the following four areas: dielectric nano crystals and their optical properties, nonlinear optics – in particular optical parametrical oscillators and terahertz generation, whispering gallery mode resonators, and scanning probe microscopy of ferroelectric domains. We offer internships related to these topics.

  Literatur: wird zur Verfügung gestellt
  Bemerkungen: keine
6855  Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Dozent(en): D. Meschede u.M.
  Fachsemester: ab 5. Semester/3. year of studies
  Wochenstundenzahl: 30 days
  Erforderliche Vorkenntnisse: Two years of physics studies
  Inhalt: Practical training in the reserach group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations

The minimum duration is 30 days, or 6 weeks.
  Literatur: will be individually handed out
  Bemerkungen: Projects are always available. See our website.
6856  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 4-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Fachsemester: ab 5.
  Wochenstundenzahl: 4-6 Wochen (ganztägig) nach Vereinbarung
  Erforderliche Vorkenntnisse: Vordiplom, Quantenmechanik-Vorlesung
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der Quantenoptik mitzuarbeiten. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

6857 BCGS Spring Intensive Course:
Understanding and building a quantum communication link
March 30 - April 4, 2009, Monday to Saturday, morning and afternoon
  Dozent(en): D. Meschede, W. Alt, F. Vewinger, A. Widera
  Fachsemester: ab 7. Fachsemester
  Wochenstundenzahl: 1 Woche ganztägig
  Erforderliche Vorkenntnisse: Grundkurse Theorie, Experiment
  Inhalt: “Understanding and building a quantum communication link”

An integrated course on theoretical and experimental aspects of quantum information processing. The course includes practical construction of a quantum communcation link.

Duration: March 30 - April 4, 2009
* For BCGS members only
* Maximum number of participants: 10 students,
* all groups welcome, 1st year master course students have preference
* Lecture number phyiscs737/U Bonn, 4 cps
* Lectures, seminars and practical training take place at the Institut für Angewandte Physik, Bonn

Lecturers: D. Meschede with A. Widera, W. Alt, F. Vewinger
  Literatur: will be given later
  Bemerkungen: Preliminary Schedule

Morning Afternoon
30.03. Lecture 1: Introduction Practical Training 1
Lecture 2 Seminar 1 (Key References)
01.04. Lecture 3 Lecture 4
Practical Training 2 Seminar 2 (Key References)
02.04. Practical Training 3 Lecture 5
Practical Training 4 Joint Activity
03.04. Lecture 6 Seminar 3 (Key References)
Lecture 7 Lecture 8
04.04. Practical Training 5 Seminar 4 (Key References)
Practical Training 6 Lecture 9
05.04. Seminar 5 (Key References)
Practical Training 7
6935  Stars and stellar evolution
Mi 14-17, HS Astronomie
mit Übungen, n.V.
  Instructor(s): N. Langer
  For term nos.: ab 5.
  Hours per week: 2+1 (Lecture) + 2 (tutorial)
  Prerequisites: Introduction to Astronomy
  Contents: Stellar atmospheres and stellar spectra
Stellar structure and physics of stellar interiors
Star formation and the stellar initial mass function
Thermonuclear reactions in stars
Pre-main-sequence stars
Main sequence stars
Post-main sequence stellar evolution
End stages of stellar evolution
Stellar pulsation
Binary stars
The effects of stars on their environment
  Literature: The lecture script by de Boer and Seggewiss (can be purchased through the AIfA).
Additional reading: R. Kippenhan and A. Weigert, "Stellar Structure and Evolution", Springer 1994, ISBN 3-540-58013-1
  Comments: Start: Oct. 15, 2008, 14:00 c.t.
For more details see http://www.astro.uu.nl/~langer/siu_web/sse0809.html

6940  Astronomical interferometry and digital image processing
Mi 15.30-17, HS 0.02, MPIfR
  Instructor(s): G. Weigelt
  For term nos.: From the first semester
  Hours per week: 2
  Prerequisites: No
  Contents: Wave optics,
statistical optics,
astronomical imaging,
digital image processing,
astronomical interferometry in the infrared,

  Literature: J.W. Goodmann, Statistical Optics (Wiley Interscience)
J.W. Goodmann, Fourier Optics (McGraw Hill)
6941 Sub-mm astronomy
Mi 10-12, HS 0.01, MPIfR
mit Übungen, n.V.
  Instructor(s): K. Menten, F. Bertoldi
  For term nos.: 5 and up
  Hours per week: 2+1
  Prerequisites: Basic knowledge of astronomy
  Contents: Students with a basic background in astronomy and
physics will be introduced to astronomy in the sub-millimeter wavelength
range, one of the last spectral regions to be fully explored with new
high-altitude ground-based and airborne telescopes and from space.

The basic concepts of emission/excitation mechanisms from interstellar dust
and molecules are discussed as well as the properties of the observed
objects: amongst others, the dense interstellar medium, star-forming
regions, and circumstellar environments. Star formation in our own and in
other galaxies as well as in the Early Universe is a central focus of
sub-millimeter astronomy and will thus be introduced in depth. Telescopes,
instrumentation, and observational techniques will discussed in the course,
with an emphasis on those with a strong Bonn participation: APEX, NANTEN2,
Herschel, SOFIA, ALMA.
  Literature: We shall provide references to contemporary review articles and recommend textbooks.
  Comments: The course will be taught in English unless all students prefer German.
6945 Astronomie für Einsteiger
Di 17, HS XII, Universitätshauptgebäude
  Dozent(en): M. Geffert
  Fachsemester: 1
  Wochenstundenzahl: 1
  Erforderliche Vorkenntnisse: Keine
  Inhalt: Die Vorlesung "'Astronomie für Einsteiger I"' versteht sich als Vorlesung für alle, die sich zwar für Astronomie interessieren, aber bisher noch keine Grundkenntnisse haben. Der erste Teil der Vorlesung beinhaltet die Grundlagen der galaktischen Astronomie. Folgende Themen werden behandelt: Astronomische Beobachtung am Himmel, Sternbilder, das Planetensystem, Kometen und Asteroiden, die Milchstrasse, Lebensweg eines Sterns.

Die Vorlesung ist gedacht für Hörerinnen und Hörer aller Fakultäten und interessierte Bonner Bürger. Die Vorlesung schließt eine Exkursion zum Observatorium Hoher List, der Aussenstelle der Bonner Sternwarte, ein.
  Literatur: Astronomische Jahrbücher
wie z.B. "Himmelsjahr" von H.U. Keller (Kosmos)

Astronomie für Dummies
S.P. Maran
Verlag: Wiley VCH Verlag GmbH
Co-Verlag: Ullstein Medical Vlgges.
2. Auflage (unbedingt auf die 2. Auflage achten!)

Bücher zur Einführung in die Astronomie

Für die Beobachtung speziell:
Atlas für Himmelsbeobachter
E. Karkoschka
ISBN: 3-440-08826-X
4. Auflage
  Bemerkungen: Zu der Vorlesung wird ein einstündiges Praktikum im Argelander-Institut angeboten. Die Termine dafür werden im Anschluss an die Vorlesung vereinbart.
6946 Astronomisches Beobachtungspraktikum zur Vorlesung "Astronomie für Einsteiger"
ges. Ankündigung
  Dozent(en): M. Geffert
  Fachsemester: 1
  Wochenstundenzahl: 1
  Erforderliche Vorkenntnisse: Teilnahme an der Vorlesung "Astronomie für Einsteiger"
  Inhalt: Das Praktikum wird begleitend zu der Vorlesung "Astronomie für Einsteiger" angeboten. In ihm werden grundlegende astronomische Messungen wir z.B. die Messung der Lichtkurve eines Sterns durchgeführt.

Das Praktikum findet auf Absprache im Argelander-Institut für Astronomie statt.
Interessenten können sich direkt beim Dozenten melden (geffert@astro.uni-bonn.de) oder nach der Vorlesung "Astronomie für Einsteiget".
  Literatur: wird bei Praktikumsbeginn angegeben
6948  Radio- and X-ray observations of dark matter and dark energy
Fr 13-15, R. 1.11
  Instructor(s): J. Kerp, T. Reiprich
  For term nos.: 5
  Hours per week: 2
  Prerequisites: Introduction to Astrophysics
Introduction to Cosmology
  Contents: To constrain the nature of Dark Energy and Dark Matter is one of the top themes of modern astrophysics. In this lecture we present a coherent picture of this topic using information carried by radio and X-ray wavelengths. In the first art of the lecture we will cover modern distance determination methods, the structure formation, Compact High-Velocity Clouds, the Warm Hot Intergalactic Medium and the Sunyaev-Zeldovich Effect. In the second part of the lecture we elaborate on the theoretical background of dark matter and dark energy tests, describe several practical approaches with an emphasis on the use of galaxy clusters, and give an overview of relevant current and future instruments.
  Literature: We prepare a manuscript of this lecture, which will be distributed during the course of the lecture.
6949  The physics of dense stellar systems
Di 10-12, R. 3.19
mit Übungen, n.V.
  Instructor(s): P. Kroupa
  For term nos.: 5. or higher
  Hours per week: 2 (lecture) + 1 (tutorial)
  Prerequisites: Vordiploma in physics
  Contents: Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations, Focker-Planck equation, dynamical states, relaxation, mass segregation, evaporation, ejection, core collapse.
Formal differentiation between star clusters and galaxies.
Binary stars as energy sinks and sources.
Star-cluster evolution.
Cluster birth, violent relaxation.
Birth of dwarf galaxies.
  Literature: 1) Lecture notes will be provided.
2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988)
3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003)

  Comments: Aims: To gain a deeper understanding of stellar dynamics, the birth and origin of stellar populations and the fundamental building blocks of galaxies.

This course corresponds to course astro853 in the M.Ap. programme.

Start: Tuesday, 14.10.2008, 10:15
6950  Numerical gravitational dynamics
Do 14-16, R. 3.19
  Instructor(s): H. Baumgardt, P. Kroupa
  For term nos.: 5. and upwards
  Hours per week: 2 (lecture) + 1 (tutorial)
  Prerequisites: Vordiploma in physics
  Contents: Ordered dynamics: the two-body problem and its analytical solution.
Integration of planetary motions.

Collisional dynamics: integration of stelalr orbits in star clusters, star-cluster evolution.

Collisionless dynamics: integration of stellar orbits in galaxies, cosmological aspects.
  Literature: 1) Lecture notes will be provided.
2) S.J. Aarseth: Gravitational N-body Simulations: Tools and Algorithms (Cambridge University Press, 2003).

  Comments: Aims: familiarisation with the various numerical recipes to solve the coupled 2nd order differential equations as well as with the limitations of these methods.

This course corresponds to course astro854 in the M.Ap. programme.

Start: Thursday 16.10., 14:15
6952  Star formation
Do 11-13, HS 0.01, MPIfR
  Dozent(en): P. Schilke, B. Parise
  Fachsemester: 3 and up
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: basic astronomy
  Inhalt: Introduction to ISM and Star Formation -- Physical processes -- Interstellar Chemistry -- Conditions for
star formation: cloud collapse -- Protostellar Evolution -- Low Mass/High Mass Star formation -- Jets and
Outflows/Disks -- Shocks, PDRs -- IMF, Global SF -- Starburst Galaxies -- Star formation history of the
  Literatur: S. W. Stahler, F. Palla: The Formation of Stars, Wiley 2004
N. Schulz: From Dust to Stars, Springer 2005
Reipurth, Jewitt, Keil (Edts.): Protostars and Planets V. University of Arizona Press 2007.
6953  Quasars and microquasars
Do 9-10.30, HS 0.01, MPIfR
  Instructor(s): M. Massi
  For term nos.: 5
  Hours per week: 2
  Contents: Stellar-mass black holes in our Galaxy mimic many of the phenomena seen in quasars but at much shorter timescales. In these lectures we present and discuss how the simultaneous use of multiwavelength observations has allowed a major progress in the understanding of the accretion/ejection phenomenology.

Lecture 1
Microquasars and Quasars
Stellar evolution, white dwarf, neutron star, BH

Lecture 2
Accretion power in astrophysics
Eddington luminosity
Nature of the mass donor: Low and High Mass X-ray Binaries
Accretion by wind or/and by Roche lobe overflow
Mass function: neutron star or black hole ?

Lecture 3
X-ray observations
Temperature of the accretion disc
Spectral states and inner radius
Low/Hard state and radio emission
Magnetohydrodynamic Production of Jets
Quasi Periodic Oscillations (QPO) and spectral states

Lecture 4
Radio observations
Single dish monitoring and VLBI
Superluminal motion
Doppler Boosting
Synchrotron radiation
Plasmoids and steady jet

Lecture 5
6954  Practical radio interferometry
Mi 13-15, R. 1.11
  Instructor(s): W. Vlemmings, F. Bertoldi, U. Klein, P. Schilke
  For term nos.: from 7th
  Hours per week: 3
  Prerequisites: This lecture series is intended for all Master-level or PhD students, postdocs and senior astronomers who are interested to learn more about radio-interferometry. The lectures will be accompanied by practical exercises that use several data analysis tools on example data sets. The more experienced are welcome to attend lectures on topics of their interest.
  Contents: The lecture will cover basic interferometry, calibration and imaging as well the more advanced topics of:

  • VLBI

  • Spectral line observations

  • Polarization

  • Astrometry

  • Data interpretation/modeling

Additionally the practice session will serve as an introduction to the AIPS, Miriad, CLIC and CASA data reduction packages.
  Literature: Suggested reading:

  • Synthesis Imaging in Radio Astronomy II (ASP Conference Series, V. 180, 1998), Editors: Taylor, Carilli, Perley

  • Interferometry and Synthesis in Radio Astronomy (Wiley 2001), by Thompson, Moran, Swenson

6956  The cosmic history of the intergalactic medium
Mo 10-12, HS Astronomie
  Instructor(s): C. Porciani
  For term nos.: 7th semester or higher
  Hours per week: 2+1
  Prerequisites: Basic atomic physics (hydrogen atom) and basic thermodynamics. No previous knowledge of astrophysics is required.
  Contents: Basic: Transport of continuum and line radiation, photo-ionizations and radiative recombinations, the cooling function, the expanding universe.

Advanced: Cosmic recombination, the dark ages, hydrogen and helium reionization, 21cm-probes of the dark ages and reionization, quasar absorption systems, the UV background, the warm-hot intergalactic medium, intracluster gas, Lyman-alpha fluorescence.
  Literature: The study of the intergalactic medium is a young subject. No textbook exists for this topic. Lecture notes will be distributed.
  Comments: The aim of this course is to familiarize students with the physics of the intergalactic medium (the material that pervades the vast regions between galaxies) and with its significance for cosmology and the astrophysics of galaxies. Thanks to progress in observations, theoretical modeling, and computational power, our knowledge in this field is growing rapidly. The main questions driving current research will be discussed and new results introduced as they occur.
6936 Cosmology
Mo 16-19, HS 0.01, MPIfR
mit Übungen, 1-st., n.V.
  Instructor(s): P. Schneider
  For term nos.: 7th (for diploma students), 1st year master, but students from the 5th semester may be able to attend
  Hours per week: 3 + 1
  Prerequisites: Very helpful: The introductory course in astronomy. Knowledge of the physics
courses up to the Vordiplom are assumed; furthermore, we need some material from Thermodynamics/Statistical Physics.
  Contents: Introduction and overview; The isotropic Universe;
Introduction to General Relativity; Cosmological solutions of
Einstein's equations; Thermal history of the Universe; Gravitational
Lensing; Weak Gravitational Lensing; Structure Formation in the
Universe; CMB anisotropies; Inflation; Cosmic shear; Galaxy formation

The course concentrates on the aspects of the formation of structure
in the Universe, how these are related to observations, and how
cosmological parameters can be determined. The lecture specifically
highlights recent observational results in cosmology.
  Literature: Lecture notes will be distributed; additional text books for further reading will be mentioned at the beginning of the course. A lower-level presentation of some of the material, which might be helpful as preparation, can be found in Chaps. 4, 7 and 8 of P. Schneider: `Extragalactic Astronomy and Cosmology', Springer-Verlag, 2006.
6937  Selected applications of general relativity in astrophysics
Mi 10-12, R. 3.19
  Instructor(s): O. Wucknitz
  For term nos.: >= 5
  Hours per week: 2
  Prerequisites: Basic methods of theoretical physics. Previous knowledge of special relativity and tensor analysis is beneficial but not strictly required.
  Contents: This lecture gives an introduction into the fundamentals of general relativity. Based on that we will discuss some of the aspects of GR that are relevant for astrophysics. This includes black holes and gravitational waves. Cosmology is the subject of other lectures and will not be covered in detail.
The main goal of this lecture is a good understanding of the concepts and their consequences. Formal mathematics will be emphasised less but used as a tool.
  Comments: The agenda is meant to be flexible. If possible, additional topics will be added on request.

Moved to room 1.11, start at 10:15.
6938  Radio astronomy: tools, applications, and impacts
Di 16-17, Do 16-18, R. 1.11
Übungen: Mo 12-13, R. 1.11
  Instructor(s): U. Klein
  For term nos.: 7
  Hours per week: 3
  Prerequisites: electrodynamics
interstellar medium
  Contents: 1. Introduction
astrophysics and radio astronomy

2. Single-dish telescopes
Cassegrain and Gregory foci
geometries and ray tracing
antenna diagrams
antenna parameters

3. Fourier optics
Fourier transform
aperture – farfield relations
spatial frequencies and filtering
power pattern
convolution and sampling
resolving power

4. Influence of earth’s atmosphere
ionosphere, troposphere
plasma frequency
Faraday rotation
refraction, scintillation
absorption / emission
radiation transport

5. Receivers
total-power and heterodyne systems
system temperature
antenna temperature, sensitivity
Dicke-, correlation receiver
hot-cold calibration

6. Wave propagation in conductors
coaxial cables, waveguides
matching, losses
quasi optics

7. Backend
continuum, IF-polarimeter
filter spectrometer
acousto-optical spectrometer
pulsar backend

8. mm and submm techniques
telescope parameters and observables
atmosphere, calibration, chopper wheel
error beam
SIS receivers

9. Single-dish observing techniques
on-off, cross-Scan, Raster
continuous mapping, OTF, fast scanning
frequency-switching, wobbling technique

10. Data analysis
sampling theorem
multi-beam observations
image processing, data presentation

11. Interferometry basics
aperture - image plane
complex visibility
delay tracking
fringe rotation

12. Imaging
Fourier inversion
cleaning techniques
zero-spacing correction

13. VLBI
station requirements
calibration and imaging
retarded baselines

14. Spectroscopy
XF and FX correlation
data cubes

15. Polarimetry
cross dipoles
circular feeds
spurious polarization

16. Future developments and science
projects, telescopes
impacts: ISM, IGM, cosmology ...
  Literature: Radio Astronomy: Tools, Applications & Impacts
Lecture Notes, U. Klein (for free)

Tools of Radio Astronomy
Kristen Rohfs, Thomas L. Wilson

Radio Astronomy
John D. Kraus
Cygnus-Quasar Books

The Fourier Transform and its Applications
Ronald N. Bracewell
McCraw-Hill Book Company
6962  Radioastronomisches Praktikum I
ges. Ankündigung
  Dozent(en): U. Klein
  Fachsemester: 7
  Wochenstundenzahl: 2
  Erforderliche Vorkenntnisse: It is recommended to attend the lecture
"Radio astronomy: tools, applications, and impacts"
  Inhalt: wave propagation on coax cables and waveguides
setup of a radioastronomical receiver
  Literatur: "Radio astronomy: tools, applications, and impacts"
Lecture Notes, 2008, U. Klein (for free)
  Bemerkungen: Details and organisation will be done in the framework of the lecture
"Radio astronomy: tools, applications, and impacts"

This lab is also part of the advanced lab course in Master of Physics and Master of Astrophysics
6965  Seminar on theoretical dynamics
Fr 9.30-11, R. 3.19
  Instructor(s): H. Baumgardt, P. Kroupa
  For term nos.: 5th and upwards
  Hours per week: 2
  Prerequisites: Diplom in Physics.
  Contents: Formation of planetary and stellar systems;

Stellar populations in clusters and galaxies;

Processes governing the evolution of stellar systems.
  Literature: Current research papers and own research.
  Comments: Students and post-docs present the current state of their own research to a critical audience.

Note: the time of the seminar may change.
6966  Seminar on star clusters and dwarf galaxies
Fr 14-16, R. 3.19
  Instructor(s): H. Baumgardt, P. Kroupa
  For term nos.: 7. and higher
  Hours per week: 2
  Prerequisites: Vordiploma in physics/Bachelor in physics;

The lecture "Stars and Stellar Evolution" (astro811);

The lecture "Astrophysics of Galaxies" (astro821)
  Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stellar populations, star clusters and dwarf galaxies will be presented and discussed.
  Literature: Latest astro-ph pre-prints, or recently published reseach papers.

  Comments: The students will be introduced to the newest state of knowledge in the field of star clusters and dwarf galaxy research. They will familiarise themselves with open questions and acquire knwoledge on the newest methods in research.

This is course astro893 in the MAp programme.
6968 Seminar on strong gravitational lensing and lens modelling
Fr 16-18, R. 3.19
  Instructor(s): O. Wucknitz
  For term nos.: >= 5
  Hours per week: 2
  Prerequisites: basic understanding of astronomy and gravitational lenses in particular
  Contents: Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling
  Comments: The format of this seminar is a mixture of more formal presentations and informal discussions.
6961  Seminar der Astronomie / Astrophysik
Mo 14-15.30, HS, Astronomie
  Instructor(s): P. Kroupa, H. Baumgardt, F. Bertoldi, J. Kerp, U. Klein, M. Massi, K. Menten, T. Reiprich, P. Schneider, G. Weigelt, O. Wucknitz
  For term nos.: Vordiplom in physics
  Hours per week: 2
  Prerequisites: Lectures: Introduction to Astronomy I and II.
  Contents: Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, quasars, cosmology).
  Literature: Current research papers.
  Comments: The students will learn to hold a formal but pedagogical presentation about a subject of current international research.

Start: 13.10.