.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Wintersemester 2010/2011

Logo der Fachgruppe Physik-Astronomie der Universität Bonn


physics606  Advanced Quantum Theory
Mo 11-13, Th 12, HS I, PI
  Instructor(s): B. Metsch
  Prerequisites: Theoretical courses at the Bachelor degree level
  Contents:

  • Born approximation, partial waves, resonances

  • advanced scattering theory: S-matrix, Lippman-Schwinger equation

  • relativistic wave equations: Klein-Gordon equation, Dirac equation

  • representations of the Lorentz group

  • many body theory

  • second quantization

  • basics of quantum field theory

  • path integral formalism

  • Greens functions, propagator theory

  Literature:

  1. L. D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.3 Quantum Mechanics (Butterworth-Heinemann 1997)

  2. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley 1995)

  3. F. Schwabl, Advanced Quantum Mechanics. (Springer, Heidelberg 3rd Ed. 2005)

  Comments:  
physics607 Advanced Theoretical Physics
Tu 10-12, SR I, HISKP, Th 16, SR II, HISKP
  Instructor(s): U. Meißner, A. Rusetsky
  Prerequisites: Quantum Mechanics 1+2, Quantum Field theory 1
  Contents:

  • Discrete symmetries

  • Renormalization group and asymptotic behavior

  • Quantization of the fields in the path integral formalism

  • Divergences and regularization

  • Quantization of constrained systems: gauge fields

  • Symmetries and Ward identities, renormalization

  • Anomalies

  • Renormalization in spontaneously broken theories

  Literature:

  1. D. Faddeev and A.A. Slavnov, Introduction to Quantum Theory

  2. M. Peskin and D. Schröder, An Introduction to Quantum Field Theory

  3. H. Ryder, Quantum Field Theory

  4. C. Itzykson and J.-B. Zuber, Quantum Field Theory

  5. T. Muta, Foundations of Quantum Chromodynamics

  6. K. Huang, Quarks, Leptons and Gauge Fields

  Comments: Language: E/D at the discretion of the audience
physics611 Particle Physics
Tu 14-16, Th 8-10, HS, IAP

Diplom: WPVEXP, VEXP
  Instructor(s): J. Dingfelder, N. Wermes
  Prerequisites: BSc Vorlesung physik511 Physik V (Kerne und Teilchen)
  Contents: • Basics
notations, kinematics Lorentz systems, Mandelstam variables,
cross sections and lifetimes, 2-body and 3-body decays, Colliders and
Fixed-target experiments

• Quark Model

• Phenomena and Experiments in Electromagnetic Interactions

• Symmetries and Conservation Laws

• Experiments and Detectors

• Phenomena and Experiments in Strong Interactions

• Phenomena and Experiments in Weak Interactions

• (Electro)-Weak Interactions and the Standard Model of Particle Physics

  Literature: The lecture does not follow a particular book. A selection of background literature is given below.

C. Berger Elementarteilchenphysik
D. Griffith Introduction to Elementary Particles D. Perkins Introduction to High Energy Physics
A. Seiden Particle Physics: A comprehensive Introduction
W.N. Cottingham, An Introduction to the Standard Model
D.A. Greenwood of Particle Physic
G. Kane Modern Elementary Particle Physics
Halzen & Martin Quarks and Leptons P. Schmüser Feyman-Graphen und Eichtheorien für
Experimentalphysiker
  Comments: This lecture is recommended as the first course for master students interested in (experimental) particle physics.
physics612  Accelerator Physics
We 10-12, HS, IAP, Th 10-12, SR I, HISKP
Lecture on Th, 14.10.2010 will take place in HS, HISKP

Diplom: WPVANG, VANG
  Instructor(s): W. Hillert, A. Lehrach, R. Maier
  Prerequisites: Mechanics, Electrodynamics
  Contents: Die neuere experimentelle Physik basiert zum Teil auf dem Einsatz von Teilchenbeschleunigern, insbesondere im Bereich der Hochenergiephysik, der Materialforschung und der Erforschung der Substruktur der Atomkerne und der Hadronen. Durch die aktuellen wissenschaftlichen Fragestellungen wurden und werden auch weiterhin ständig gesteigerte Herausforderungen an den Betrieb und die Entwicklung von Teilchenbeschleunigern gestellt, was zum Einsatz modernster Technologien aus einer Vielzahl von physikalischen Bereichen führte (als Beispiele mögen hier der Aufbau einer ca. 27 km langen, fast vollständig supraleitenden Anlage am CERN / Genf oder die Planung eines 1 Angström Röntgenlasers am DESY / Hamburg dienen). Im Zuge dieser Entwicklungen und systematischen Untersuchungen der physikalischen Vorgänge in Beschleunigern entstand die Beschleunigerphysik als eigenständiger Fachbereich der angewandten Physik.

Die vorliegende Vorlesung ist eine Einführung in die Beschleunigerphysik. Sie gibt einen Überblick über die verschiedenen Funktionsweisen unterschiedlicher Beschleunigertypen und führt, neben einer physikalischen Behandlung der wichtigsten Subsysteme (Teilchenquellen, Magnete, Hochfrequenzresonatoren), in die transversale und longitudinale Strahldynamik ein.


More recent experimental physics is partly based on the use of particle accelerators, especially in high energy physics, materials research and exploration of the substructure of atomic nuclei and hadrons. Due to the current scientific questions, more and more demanding challenges have been and still are posed to the
operation and development of particle accelerators, thus leading to the use of state-of-the-art high technology taken from a multitude of fields in physics (as examples may be cited the construction of a 27 km, almost entirely superconducting facility at CERN / Geneva or the planning of a 1 Angström X-ray laser at DESY / Hamburg). In the course of these developments and systematic investigation of the physical processes in particle accelerators, particle accelerator physics emerged as a stand-alone field of applied physics.

The present lecture is meant as an introduction into particle accelerator physics. It provides an overview of the various functional principles of different accelerator types and provides, alongside a physical treatment of the most important subsystems (particle sources, magnets, resonant cavities), an introduction into transversal and longitudinal orbit dynamics.


Inhaltsverzeichnis / Table of Contents:

  • Einführung / Introduction

  • Überblick über Beschleunigertypen / Elementary Overview

  • Bauelemente von Teilchenbeschleunigern / Subsystems of Particle Accelerators

  • Lineare Strahloptik / Linear Beam Optics

  • Kreisbeschleuniger / Circular Accelerators

  Literature: H. Wiedemann, Particle Accelerator Physics, Springer 1993, Berlin, ISBN 3-540-56550-7

D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN O-471-55163-5

F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, Springer 1996, Berlin, ISBN 3-540-61238-6

K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4

S. Y. Lee, Accelerator Physics (Second Edition), World Scientific, Singapore 2004, ISBN 981-256-200-1 (pbk)

...
  Comments: Es besteht die Möglichkeit, den Lernstoff durch detaillierte Besichtigungen und praktische Studien an der Beschleunigeranlage ELSA des Physikalischen Instituts zu veranschaulichen und zu vertiefen.

Zu dieser Vorlesung wird ein Script im Internet (pdf-Format, Englisch) zur Verfügung gestellt. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)


The opportunity will be offered to exemplify and deepen the subject matter by detailed visits and practical studies at the institute of physics’ accelerator facility ELSA.

Accompanying the lecture, a script (pdf-format, english) will be provided on the internet. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)
physics618 Physics of Particle Detectors
Tu 8-10, Th 14, SR I, HISKP

Diplom: WPVEXP, VEXP
  Instructor(s): K.-T. Brinkmann
  Prerequisites: - basic knowledge of electronics (electromagnetics and circuitry) helpful
- elementary knowledge of particle and nuclear physics useful
  Contents: 1. Introduction
Detection of charged and neutral radiation with optimum resolution
Measurement of particle properties
Applications in medicine and biology
Examples of specific detector types

2. Interaction of Radiation with Matter
Fundamentals: Cross Section, Absorption
Interaction of charged particles with matter
Interaction of photons with matter

3. Detectors for ionizing particles (ionization detectors)
3.1. Principles of ionisation detectors
3.2. Gas-filled Ionisation Detectors
3.3. Semiconductor Detectors

4 Cerenkov Detectors

5 Transition Radiation Detectors

6 Scintillation Detectors

7 Calorimeters
7.1 Electromagnetic Calorimeters
7.2 Hadron Calorimeters
  Literature: W.R. Leo Techniques for Nuclear and Particle Physics Experiments
Springer, paperback , 1996 ~ 70 €
ISBN: 0387572805

C. Grupen Teilchendetektoren
BI Wissenschaftsverlag, 1993

T. Ferbel Experimental Techniques in High Energy Nuclear and Particle Physics
World Scientific Singapore, 1991

G. Knoll Radiation Detection and Measurement
John Wiley, 2000, Neuauflage 2002


G. Lutz Semiconductor Radiation Detectors ~ 100 €
Springer, 1999
ISBN: 3-540-64859-3

L. Rossi, P. Fischer, Pixel Detectors: From Fundamentals to Applications
T. Rohe, N. Wermes Springer, 2006
ISBN: 3-540-28332-3 119 €
  Comments: Particle detectors will be discussed with emphasis on the underlying physics concepts and elementary particle interactions. Some basic understanding of the electronics used in the detection and the effects that determine the quality of detection such as fluctuations and noise contributions will be communicated.

This lecture is a prerequisite for students whose main interest is experimental particle, hadron and nuclear physics. It is also useful for students interested in medical imaging detectors.
physics614  Laser Physics and Nonlinear Optics
Tu 8-10, Th 14-16, HS, IAP

Diplom: WPVEXP, VEXP
  Instructor(s): K. Buse, D. Haertle
  Prerequisites: Bachelor in Physics or "Physik-Vordiplom"
  Contents: Laser Basics (introduction, principle of a laser, history, properties and applications of laser light, fundamentals: absorption and emission of light, two-level system, rate equations, small-signal amplification, laser threshold, dynamics of a two-level laser, line width, three and four level lasers, resonators [overview, matrix approach for calculation of optical systems, stability criterion])

Waveguides (slab waveguides, Fresnel formulas and total internal reflection, phase-matching and modes, effective refractive indices, BV diagram, field distribution, measurements of mode patterns and effective refractive indices)

Mirrors (metal and dielectric mirrors, phase-conjugating mirrors, Bragg mirrors [coupled-wave theory])

Laser modes (longitudinal modes, Gaussian beams, transversal modes, whispering gallery modes, mode selection, M2 number)

Coherence (temporal coherence, spatial coherence, intensity enhancement)

Generation of laser pulses (continuous-wave and pulsed lasers – a review, spiking, Q-switching, mode-locking, pulse compression)

Gas lasers (atom lasers: general remarks, multiple-electron atoms, metal vapor lasers, argon-ion lasers, krypton-ion lasers, nitrogen laser, excimer lasers, carbon-dioxide lasers)

Semiconductor lasers (history, relevance, key parameters, direct and indirect semiconductors, threshold current and output power, heterostructure lasers, Kramers-Kronig relations, distributed-feedback lasers, manufacturing of semiconductor lasers)

Solid state lasers (general remarks, ruby laser, neodymium yttrium garnet laser, erbium laser, tunable solid-state lasers, color-center lasers)

Unusual lasers (dye lasers, free-electron lasers, X-ray lasers, chemical lasers, atom lasers)

Manipulation of laser light (intensity, polarization, phase, color)

Applications (review, material processing, telecommunication and multimedia, optical metrology)
  Literature: "Laser", Fritz Kurt Kneubühl and Markus Werner Sigrist, Teuber-Verlag 2008

"Photonics: Optical Electronics in Modern Communication", Amnon Yariv and Pochi Yeh, Oxford University Press, 2006
  Comments: The language will be English if one or more participants require this. Otherwise the course will be given in German.
physics619 Applied Photonics
Tu 12, Th 10-12, HS, IAP

Diplom: WPVANG, VANG
  Instructor(s): S. Linden
  Prerequisites:  
  Contents: "Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification, and most importantly, its utilisation for the benefit of mankind."

Contents of the course:

  • Rays

  • Elemets of electrodynamics

  • Waveguides and fibers

  • Light Sources

  • Detectors

  • Modulators

  • Nonlinear Optics

  • Advanced optical materials




  Literature: A script of the lectures will be provided.
  Comments:  
physics615 Theoretical Particle Physics
Tu 16-18, Fr 12, HS I, PI

Diplom: WPVTHE, VTHE
  Instructor(s): H.-P. Nilles
  Prerequisites: Quantum mechanics,
Basic knowledge of quantum field theory and group theory,
basics of particle physics phenomena
  Contents: Classical field theory,
gauge theories ,
Higgs mechanism,
Standard model of strong and electroweak interactions,
Grand unification,
Neutrino physics,
Introduction to supersymmetry
  Literature: T.P. Cheng and L.F. Li, Gauge theories of elementary particle physics,
Clarendon Press, 1984
M.E. Peskin and D. Schroeder, An introduction to quantum field theory,
Addison Wesley, 1995
J. Wess and J. Bagger, Supersymmetry and supergravity,
Princeton University Press, 1992
  Comments: Language will be English or German at the discretion of the audience.
First lecture will take place on Tuesday, October 12th (4pm, HS1, PI).
there will be exercises in groups (first meeting after the first lecture
on October 12th).
physics616  Theoretical Hadron Physics
We 8-10, Th 15, SR I, HISKP

Diplom: WPVTHE, VTHE
  Instructor(s): H.-W. Hammer
  Prerequisites: Quantum Mechanics, Advanced Quantum Theory
  Contents:

  1. Introduction: brief overview of particle physics

  2. Symmetries and Quarks: hadron spectra and interactions, hadron masses, light and heavy quarks, simple quark model,...

  3. Hadron Structure: form factors and structure functions, unitarity and analyticity, vector meson dominance, dispersion relations,...

  4. Introduction to QCD: QCD Lagrangian, asymptotic freedom, perturbative QCD,...

  5. Chiral symmetry and anomalies: spontaneous symmetry breaking, Goldstone theorem, hadron interactions at low energies, scale anomaly and nucleon mass,...

  Literature:

  • F. Halzen, A.D. Martin; Quarks and Leptons (Wiley 1984)

  • D.H. Perkins; Introduction to High Energy Physics (Addison-Wesley 1987)

  • A.W. Thomas, W. Weise; The Structure of the Nucleon (Wiley-VCH 2001)

  • F.E. Close; An Introduction to Quarks and Partons (Academic Press 1980)

  • J.F. Donoghue et al.; Dynamics of the Standard Model (Cambridge University Press 1995)

  • M.E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Westview Press 1995)

  Comments: A basic knowledge of Quantum Field Theory is useful.
physics717  High Energy Physics Lab
4 to 6 weeks on agreement
  Instructor(s): E. von Törne
  Prerequisites:  
  Contents: This course offers students in their first year of their Master studies the opportunity to participate in research activities.
  Literature:  
  Comments: The students join one of the high energy physics groups groups and conduct their own small research project for typically 4 weeks. We recommend to participate in a project during term break (either in spring or summer/ early fall) but projects during the semester are also possible. More information here: http://heplab.physik.uni-bonn.de/
physics719  BCGS intensive week on detectors and readout
electronics (Advanced topics in high energy physics)
  Instructor(s): M. Barbero, F. Hügging, A. Kruth, E. von Törne
  Prerequisites: introductory lecture in electronics
  Contents: * Overview: research in detector development at U. of Bonn
* General detector physics
* Silicon detectors
* Low-noise readout electronics
* CMOS chip design with Cadence
* Detectors for the Large Hadron Collider (LHC) and Super-LHC
* Verilog
* Radiation effect in semi-conductors and mitigation
* Silicon devices with serial powering
* Simulation of circuits with PSpice

* Hands-on activities: Chipdesign in 180 nm technology
* Programming of FPGA hardware in Verilog
  Literature:  
  Comments: More information here: http://www.uni-bonn.de/~etoerne/teaching/intensive-week10/
physics732  Optics Lab
4 to 6 weeks on agreement
  Instructor(s): K. Buse, M. Fiebig, D. Meschede, F. Vewinger, M. Weitz
  Prerequisites:  
  Contents: The Optics Lab is a 4-6 week long practical training/internship in one of the research groups in Photonics and Quantum Optics, which can have several aspects:
- setting up a small experiment
- testing and understanding the limits of experimental components
- simulating experimental situations

Credit points can be obtained after completion of a written report.

  Literature: Will be given by the supervisor
  Comments:  
physics737  BCGS Intensive Week: Advanced Topics in Photonics and Quantum Optics
February/March 2011
  Instructor(s): K. Buse, I. Breunig
  Prerequisites: Bachelor in Physics or "Vordiplom"
  Contents: CHANGING THE COLOR OF LIGHT: Nonlinear-optical frequency conversion from the visible to the terahertz range

The intensive week contains focused lectures, seminar talks given by the participants, as well as advanced practical training. Lectures and seminar talks in the morning will provide the fundamentals of nonlinear optics needed in order to understand how to build devices that change the color of light. In the afternoon we will teach how to work successfully in an advanced laser laboratory. In order to give all participants enough hands-on experience, two setups will be built and tested: an optical parametrical oscillator and a terahertz spectroscopy system.

ÄNDERUNG DER FARBE DES LICHTS: Nichtlinearoptische Frequenzkonversion vom Sichtbaren bis zum Terahertzbereich

In der „Intensive Week“ werden Spezialvorlesungen, Seminarvorträg der teilnehmenden Studierenden sowie anspruchsvolle Experimente in Laserlaboren angeboten: An den Vormittagen vermitteln Vorlesungen und Seminarvorträge die Grundlagen der nichtlinearen Optik, um zu verstehen, wie die Farbe von Licht verändert werden kann. An den Nachmittagen führen wir in die Arbeit in einem Forschungs-Laserlabor ein. Damit alle Teilnehmer viele Möglichkeiten zum Experimentieren erhalten, werden zwei Aufbauten realisiert: ein optischer parametrischer Oszillator und ein Terahertz-Spektroskopie-System.
  Literature: Literature information will be provided during the course
  Comments: The intensive week will take place from February 21–26, 2011.

The language will be English if one or more participants require this.

Participation is limited to 12 students, and the slots will be allocated based on the first-come-first-served principle. Thus an early application is recommended. In the case of questions: Please contact Dr. Ingo Breunig, Wegelerstr. 8, Tel. (0228) 73 2575, e-mail breunig@physik.uni-bonn.de.
physics739  Ultracold atoms and many-body physics
Tu 10-12, Th 12-14, HS, IAP
  Instructor(s): D. Meschede, A. Rosch (Köln)
  Prerequisites: Basic physics education
  Contents: This lecture will present an introduction into both the experimental and theoretical aspects of ultracold atoms and many-body physics. The lecture will be held jointly by D. Meschede (experiment) and A. Rosch (theory).

Topics will include:
Experimental production and control of ultracold gases; fundamental theoretical aspects of interacting many-body systems; Bose-Einstein condensation; superfluidity; Feshbach resonances; vortices; transport phenomena; quantum magnetism;
  Literature:  
  Comments: Technical details, including organization of the two lecture halls and the exercise sessions, will by discussed during the first lecture.
physics740 Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11 or Mo 11-13, laboratories of the research group, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
Spektroskopie
Radiofrequenztechnik
Spannungsdoppelbrechung
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Montag, den 18.10.10,
9 Uhr c.t. im IAP-Konferenzraum (3. Stock)

Seminartermin Mo 9 Uhr s.t. ab 8.11.10
physics751  Group Theory
We 10-13, HS, HISKP
  Instructor(s): A. Nogga, A. Wirzba
  Prerequisites: quantum mechanics, some knowledge of linear algebra
  Contents:

  1. Finite groups

  2. Group representations and character theory

  3. Permutation group and Young tableaux

  4. Lie groups and algebras

  5. SU(2), SU(3) and the Poincaré group

  Literature:

  • H.F. Jones, Groups, representations and physics, 2nd ed.
    (Taylor & Francis, New York, 1998)

  • H. Georgi, Lie algebras in particle physics, 2nd ed.
    (Perseus, Reading, Mass., 1999)

  • F. Stancu, Group theory in subnuclear physics
    (Clarendon, Oxford, 1996)

  • M. Hamermesh, Group theory and its application to physical problems
    (Dover, New York, 1989)

  Comments:  
physics752 Superstring Theory
Mo 10-12, Tu 12, SR II, HISKP
  Instructor(s): S. Förste, A. Klemm
  Prerequisites: String Theory I, Quantum Field Theory, General Relativity
  Contents: Superstring, Heterotic String, Type IIA/B String, Type I String, Compactification Schemes and Effective Actions, Gauge Theory and String Theory, Amplitudes, M-Theory, F-Theory,
  Literature: D. Lust, S. Theisen, Lectures on String Theory (Springer, New York 1989)
M. Green, J. Schwarz, E. Witten, Superstring Theory 1+2 (Cambridge Univiversity Press 2003)
J. Polchinski, String Theory 1+2 (Cambridge University Press, 2005)
E. Kiritsis: ``String Theory in a Nutshell'' (Princeton University Press, 2007)
  Comments:  
physics760  Computational Physics
Fr 14-16, SR I, HISKP
  Instructor(s): C. Urbach
  Prerequisites: Knowledge of a modern programming language
Quantum mechanics, statistical physics
  Contents:

  • Statistical Models, Likelihood, Bayesian and Bootstrap Methods

  • Random Variable Generation

  • Stochastic Processes

  • Monte-Carlo Methods

  • Markov-Chain Monte-Carlo

  • application of these methods to physics problems

  Literature:

  • W.H. Press et al.: Numerical Recipes in C (Cambridge University Press)
    http://library.lanl.gov/numerical/index.html

  • C.P. Robert and G. Casella: Monte Carlo Statistical Methods (Springer 2004)

  • Tao Pang: An Introduction to Computational Physics (Cambridge University Press)

  • Vesely, Franz J.: Computational Physics: An Introduction (Springer)

  • Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in Statistical Physics (Springer)

  • Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle Physics (Springer)

  Comments: for passing this module students will need to present an independently completed project
physics761 Supersymmetry
Mo 13, Th 13-15, HS I, PI
  Instructor(s): H. Dreiner
  Prerequisites: Particle Physics course
  Contents: This lecture is intended for experimentalists and theorists. After a longer introduction into supersymmetry, I will discuss the prospects for the LHC.
  Literature: Books
Aitchison
Drees et al
Baer and Tata

Papers
S. Martin, Primer
  Comments:  
physics772  Physics in Medicine I: Fundamentals of Analyzing Biomedical Signals
Mo 9-11, We 12, SR I, HISKP
  Instructor(s): K. Lehnertz
  Prerequisites: Vordiplom, Bachelor
  Contents: Introduction to the theory of nonlinear dynamical systems
- regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals
- selected examples of nonlinear dynamical systems and their characteristics (model and real world systems)
- selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality)
Time series analysis
- linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function,
autoregressive modeling
- univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents,
entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity
Applications
- nonlinear analysis of biomedical time series (EEG, MEG, EKG)
  Literature: M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988.

H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York, 1989

E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993

H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003

A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001
  Comments: Beginning: Mo, Oct 11, 9:00 ct
physics651  Seminar on Current Topics in Experimental Particle Physics
Mo 11-13, Zi. 300, PI
  Instructor(s): I. Brock, K. Desch, E. von Törne, N. Wermes u.M.
  Prerequisites: Introductory particle physics course.
Physics611 (Particle Physics) can be heard in parallel.
  Contents: Topics for seminars:

Physics and detectors at hadron colliders
Detection techniques and detectors
Production of W and Z bosons at LHC
Higgs physics
Physics of the top quark
Supersymmetry searches
Extra Dimension Phenomena
  Literature: Will be distributed.
  Comments: Seminar will be in English or German depending on attendance.
physics653  Seminar on "Topics in Quantum Technology --
from Quantum Optics to Condensed Matter"
Tu 14-16, Konferenzraum, IAP
  Instructor(s): D. Meschede
  Prerequisites: For master's students and advanced bachlor's students.
  Contents: The seminar will present topics in "Quantum Technology", mostly from the fields of quantum optics and adjacent fields. A preliminary list of potential topics is:

Quantum Simulation
Cavity and Circuit QED
Quantum Repeater
Quantum Key Distribution
Quantum Imaging
Quantum Walks
Electromagnetically Induced Transparency
Quantum Memories
Quantum Oscillators
Optical Microcavities
  Literature: Will be handed out individually.
  Comments: Candidates who would like to start early working on their subject may sign up for a topic already now.
physics656 Computational Physics Seminar on Analyzing Biomedical Signals
Mo 14-16, SR I, HISKP
  Instructor(s): K. Lehnertz, B. Metsch
  Prerequisites: Vordiplom, Bachelor, basics of programming language (e.g., Fortran, C, C++, Pascal)
  Contents: - time series: chaotic model systems, noise, autoregressive processes, real world data
- generating time series: recursive methods, integration of ODEs
- statistical properties of time series: higher order moments, autocorrelation function, power spectra,
corsscorrelation function
- state-space reconstruction (Takens theorem)
- characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic
algorithms, influencing factors, correction schemes)
- testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation
- nonlinear noise reduction
- measuring synchronisation and interdependencies
  Literature: - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
ed., 2003
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
Cambridge University Press, Cambridge UK, 2001
- WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press
- see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/
  Comments: Location: Seminarraum I, HISKP
Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo October 11
physics657 Seminar on Topics in String Theory
Fr 14-16, Konferenzraum II, Zi. 166, PI
  Instructor(s): S. Förste, A. Klemm
  Prerequisites:  
  Contents: special topics in string theory
  Literature:  
  Comments: first meeting in second week of term
6805 Laboratory in the Research Group
(specifically for members of BIGS)
General introduction at the beginning of the term, see special announcement
  Instructor(s): Dozenten der Physik
  Prerequisites: Two years of physics studies (Dipl., B.Sc.)
  Contents: Practical training/internship in the research group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations
  Literature: Will be given individually
  Comments: The minimum duration is 30 days, or 6 weeks. Projects are always available. In order to obtain credit points, a report (3-10 pages) is required. No remuneration is paid for this internship.
6820 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente an nanostrukturierten Materialien; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe
pr, ganztägig, Dauer: n. Vereinb. 4-6 Wochen, PI
  Dozent(en): S. Linden
  Erforderliche Vorkenntnisse:  
  Inhalt: Das Praktikum in der Arbeitsgruppe erlaubt einen Einblick in die spannende Welt der Nanophotonik.
  Literatur:  
  Bemerkungen:  
6823 Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E)
http://polt05.physik.uni-bonn.de
pr, ganztägig, Dauer n. Vereinb., PI
  Instructor(s): H. Dutz, S. Goertz u.M.
  Prerequisites: Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik
  Contents: Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten.
Thema: Forschung und Entwicklung rund ums Polarisierte Target

Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten.
  Literature: wird gestellt
  Comments: Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten.

Depending on the students' preferences the course is given in German or in English.
6826 Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E)
(http://hep1.physik.uni-bonn.de)
pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI
  Instructor(s): F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M.
  Prerequisites: Lectures on detectors and electronics lab course
  Contents: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Pixel Detectors and Micro-Electronics
  Literature: will be handed out
  Comments: early aplication necessary

6828 Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group:
Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E)
pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., Applications to brock@physik.uni-bonn.de, PI
  Instructor(s): I. Brock u.M.
  Prerequisites: Introductory particle physics course
  Contents: Introduction to the current research activities of the group (physics analysis with data from ZEUS (HERA) and ATLAS (LHC)), introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques.

Depending on the students' preferences the course will be given in German or in English.
6830 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language (e.g. C, C++, Pascal)
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.

Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:

Prof. Dr. K. Lehnertz

email: klaus.lehnertz@ukb.uni-bonn.de
6835 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E)
http://www.hertz.physik.uni-bonn.de/
pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
  Instructor(s): K. Buse u.M.
  Prerequisites: Vordiplom oder äquivalente Leistungen im Bachelor-Studium
  Contents: Die Arbeitsgruppe ist auf drei Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, ferroelektrische Domänen sowie Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden.

The research group is active in the following three areas: dielectric nano crystals and their optical properties, ferroelectric domains, as well as nonlinear optics – in particular optical parametrical oscillators and terahertz generation. We offer internships related to these topics.

  Literature: wird zur Verfügung gestellt
  Comments: keine
6836  Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Instructor(s): D. Meschede u.M.
  Prerequisites: Two years of physics studies (undergraduate/ bachelor program)
  Contents: Practical training in the research group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations

The minimum duration is 30 days, or 6 weeks.
  Literature: will be individually handed out
  Comments: Projects are always available. See our website.
6837 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Instructor(s): M. Weitz u.M.
  Prerequisites: Vordiplom, Quantenmechanik-Vorlesung
  Contents: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literature: wird gestellt
  Comments: Homepage der Arbeitsgruppe:

http://www.iap.uni-bonn.de/ag_weitz/Bonn_AG_Quantenoptik.html
6938  Astronomical interferometry and digital image processing
Mi 15.30-17, HS 0.02, MPIfR
  Instructor(s): G. Weigelt
  Prerequisites: No
  Contents: Wave optics,
statistical optics,
astronomical imaging,
digital image processing,
astronomical interferometry in the infrared,
spectro-interferometry,
infrared interferometry of young stellar objects, stars in late evolutionary stages, and active galactic nuclei

  Literature: J.W. Goodmann, Statistical Optics (Wiley Interscience)
J.W. Goodmann, Fourier Optics (McGraw Hill)
  Comments:  
6939 Submillimeter astronomy
Do 11-13, HS 0.01, MPIfR
Exercises arranged by appointment
  Instructor(s): K. Menten, F. Bertoldi
  Prerequisites: Basic knowledge of astronomy
  Contents: Students with a basic background in astronomy and
physics will be introduced to astronomy in the sub-millimeter wavelength
range, one of the last spectral regions to be fully explored with new
high-altitude ground-based and airborne telescopes and from space.

The basic concepts of emission/excitation mechanisms from interstellar dust
and molecules are discussed as well as the properties of the observed
objects: amongst others, the dense interstellar medium, star-forming
regions, and circumstellar environments. Star formation in our own and in
other galaxies as well as in the Early Universe is a central focus of
sub-millimeter astronomy and will thus be introduced in depth. Telescopes,
instrumentation, and observational techniques will discussed in the course,
with an emphasis on those with a strong Bonn participation: APEX, NANTEN2,
Herschel, SOFIA, ALMA.
  Literature: We shall provide references to contemporary review articles and recommend textbooks.
  Comments: The course will be taught in English unless all students prefer German.
6943  The Physics of Dense Stellar Systems: the building blocks of the universe
Di 10-12, R. 3.19
Exercises arranged by appointment
  Instructor(s): P. Kroupa
  Prerequisites: Vordiploma or BSc in physics
  Contents: Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations, Focker-Planck equation, dynamical states, relaxation, mass segregation, evaporation, ejection, core collapse.
Formal differentiation between star clusters and galaxies.
Binary stars as energy sinks and sources.
Star-cluster evolution.
Cluster birth, violent relaxation.
Birth of dwarf galaxies.
  Literature: 1) Lecture notes will be provided.
2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988)
3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003)
  Comments: Aims: To gain a deeper understanding of stellar dynamics, the birth and origin of stellar populations and the fundamental building blocks of galaxies.

This course corresponds to course astro853 in the M.Ap. programme.

Start: Tuesday, 12.10.2010, 10:15
6944  Numerical gravitational dynamics
Do 15-17, R. 3.19
Exercises arranged by appointment
  Instructor(s): J. Pflamm-Altenburg
  Prerequisites: Vordiploma or BSc in physics
  Contents: The aim of this course is to impart knowledge how different stellar dynamical systems such as planetary systems, non-hierarchical few-body systems, star clusters and galaxies are integrated numerically. The students will learn what kind of algorithms are used to integrate a particular stellar system as well as how to use state of the art software for scientific research.
  Literature: 1) Lecture notes will be provided.
2) S.J. Aarseth: Gravitational N-body Simulations: Tools and Algorithms (Cambridge University Press, 2003).

  Comments: This course corresponds to course astro854 in the M.Ap. programme.

Start: Thursday 14.10., 15 c.t.
6945  Star formation
Mi 10-12, HS 0.01, MPIfR
  Instructor(s): B. Parise
  Prerequisites: basic astronomy
  Contents: Introduction to ISM and Star Formation -- Physical processes -- Interstellar Chemistry -- Conditions for
star formation: cloud collapse -- Protostellar Evolution -- Low Mass/High Mass Star formation -- Jets and
Outflows/Disks -- Shocks, PDRs -- IMF, Global SF -- Starburst Galaxies -- Star formation history of the
Universe
  Literature: S. W. Stahler, F. Palla: The Formation of Stars, Wiley 2004
N. Schulz: From Dust to Stars, Springer 2005
Reipurth, Jewitt, Keil (Edts.): Protostars and Planets V. University of Arizona Press 2007.
A.G.G.M. Tielens: The Physics and Chemistry of the interstellar medium.
  Comments:  
6946  Quasars and microquasars
Do 9-10.30, HS 0.01, MPIfR
  Instructor(s): M. Massi
  Prerequisites:  
  Contents: Stellar-mass black holes in our Galaxy mimic many of the phenomena seen in quasars but at much shorter timescales. In these lectures we present and discuss how the simultaneous use of multiwavelength observations has allowed a major progress in the understanding of the accretion/ejection phenomenology.

T.1
Microquasars and Quasars
Definitions
Stellar evolution, white dwarf, neutron star, BH

T.2
Accretion power in astrophysics
Nature of the mass donor: Low and High Mass X-ray Binaries
Accretion by wind or/and by Roche lobe overflow
Eddington luminosity
Mass function: neutron star or black hole ?

T.3
X-ray observations
Temperature of the accretion disc and inner radius
Spectral states
Quasi Periodic Oscillations (QPO)


T.4
Radio observations
Single dish monitoring and VLBI
Superluminal motion (review, article)
Doppler Boosting
Synchrotron radiation
Plasmoids and steady jet

T.5
AGN
  Literature: Literature references will be provided during the course
http://www.mpifr-bonn.mpg.de/staff/mmassi/#microquasars1
  Comments:  
6947  Practical radio interferometry
Mi 13-16, HS 0.05
  Instructor(s): W. Vlemmings, F. Bertoldi, O. Wucknitz
  Prerequisites: None, though Basic Radio Astronomy would be a plus.
  Contents: This lecture series is intended for all Master-level or PhD students, postdocs and grown-up astronomers who are interested to learn more about the practical issues involved in reducing radio-interferometric data. After basic introduction lectures, the course will consist of specialized lectures and practical sessions that use several data analysis tools (AIPS and CASA).
  Literature: ''Synthesis Imaging in Radio Astronomy II'' (ASP Conference Series, V. 180, 1998), Editors: Taylor, Carilli, Perley

Interferometry and Synthesis in Radio Astronomy (Wiley 2001), by Thompson, Moran, Swenson
  Comments:  
6949  Physics of supernovae and gamma-ray bursts
Mi 13.30 - 15.00, HS Astronomie
  Instructor(s): S. Yoon
  Prerequisites: Some knowledge on stellar evolution is desirable, but not required.
  Contents: In this course, the following topics will be addressed:
- Basic physics on stellar death
- Type Ia supernova, and its application to cosmology
- Core collapse supernova: observation and theory
- Gamma-ray bursts: observation and theory
- Implications for massive star population/star-formation in extra-galaxies
- Supernova nucleosynthesis and chemical evolution of galaxies
- Probe of the early universe with supernovae and gamma-ray bursts
  Literature: Key references will be given for each course, while some courses will be based on
"Introduction to High-Energy Astrophysics" by Stephan Rosswog & Marcus Brueggen,
(Cambridge Univ. Press). See the lecture homepage for more details.
  Comments: The lecture will start on Oct. 20, 2010.

The grade will be based on homework (50%) and an exam (50%).
6936 Cosmology
Mo 16-19, HS 0.02, MPIfR
VAST
Exercises: 1 hr in groups
  Instructor(s): P. Schneider, C. Porciani
  Prerequisites: Very helpful: The introductory course in astronomy. Knowledge of the physics
courses up to the Vordiplom are assumed; furthermore, we need some material from Thermodynamics/Statistical Physics.
  Contents: Introduction and overview; The isotropic Universe;
Introduction to General Relativity; Cosmological solutions of
Einstein's equations; Thermal history of the Universe; Gravitational
Lensing; Weak Gravitational Lensing; Structure Formation in the
Universe; CMB anisotropies; Inflation; Cosmic shear; Galaxy formation

The course concentrates on the aspects of the formation of structure
in the Universe, how these are related to observations, and how
cosmological parameters can be determined. The lecture specifically
highlights recent observational results in cosmology.
  Literature: Lecture notes will be distributed; additional text books for further reading will be mentioned at the beginning of the course. A lower-level presentation of some of the material, which might be helpful as preparation, can be found in Chaps. 4, 7 and 8 of P. Schneider: `Extragalactic Astronomy and Cosmology', Springer-Verlag, 2006.
  Comments:  
6937  Radio astronomy: tools, applications, and impacts
Di 16, Do 16-18, HS Astronomie
VAST
Exercises: Mo 12, R. 0.05
  Instructor(s): U. Klein
  Prerequisites: electrodynamics
interstellar medium
  Contents: 1. Introduction
history
astrophysics and radio astronomy

2. Single-dish telescopes
Cassegrain and Gregory foci
geometries and ray tracing
antenna diagrams
antenna parameters

3. Fourier optics
Fourier transform
aperture – farfield relations
spatial frequencies and filtering
power pattern
convolution and sampling
resolving power

4. Influence of earth’s atmosphere
ionosphere, troposphere
plasma frequency
Faraday rotation
refraction, scintillation
absorption / emission
radiation transport

5. Receivers
total-power and heterodyne systems
system temperature
antenna temperature, sensitivity
Dicke-, correlation receiver
amplifiers
hot-cold calibration

6. Wave propagation in conductors
coaxial cables, waveguides
matching, losses
quasi optics

7. Backend
continuum, IF-polarimeter
spectroscopy
filter spectrometer
autocorrelator
acousto-optical spectrometer
pulsar backend

8. mm and submm techniques
telescope parameters and observables
atmosphere, calibration, chopper wheel
error beam
SIS receivers
bolometers

9. Single-dish observing techniques
on-off, cross-Scan, Raster
continuous mapping, OTF, fast scanning
frequency-switching, wobbling technique

10. Data analysis
sampling theorem
spectroscopy
multi-beam observations
image processing, data presentation

11. Interferometry basics
aperture - image plane
complex visibility
delay tracking
fringe rotation
sensitivity

12. Imaging
Fourier inversion
cleaning techniques
self-calibration
zero-spacing correction

13. VLBI
station requirements
processor
calibration and imaging
retarded baselines
geodesy

14. Spectroscopy
XF and FX correlation
data cubes

15. Polarimetry
cross dipoles
circular feeds
spurious polarization

16. Future developments and science
projects, telescopes
LOFAR, SKA, ALMA, SOFIA, Planck
impacts: ISM, IGM, cosmology ...
  Literature: Radio Astronomy: Tools, Applications & Impacts
Lecture Notes, U. Klein (for free)

Tools of Radio Astronomy
Kristen Rohfs, Thomas L. Wilson
Springer

Radio Astronomy
John D. Kraus
Cygnus-Quasar Books

The Fourier Transform and its Applications
Ronald N. Bracewell
McCraw-Hill Book Company
  Comments:  
6962  Seminar on theoretical dynamics
Fr 14-16, R. 3.19
or arranged by appointment
  Instructor(s): P. Kroupa, J. Pflamm-Altenburg
  Prerequisites: Diploma or BSc in physics.
  Contents: Formation of planetary and stellar systems;
Stellar populations in clusters and galaxies;
Processes governing the evolution of stellar systems.
  Literature: Current research papers and own research.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

Students and post-docs present the current state of their own research to a critical audience.

Start date: after arrangement
6963  Seminar on stars, stellar systems, and galaxies
Di 16-18, R. 3.19
  Instructor(s): P. Kroupa, N. Langer, J. Pflamm-Altenburg
  Prerequisites: Vordiplom or Bachelor in physics;
The lecture "Stars and Stellar Evolution" (astro811);
The lecture "Astrophysics of Galaxies" (astro821)
  Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics;
current and preliminary research results by AIfA members and guests on the above topics.
  Literature: Latest astro-ph pre-prints, or recently published research papers.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester.

The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research.

This is course astro893 in the Masters of Astrophysics programme.
6965 Seminar on strong gravitational lensing and lens modelling
Fr 16-18, R. 3.19
  Instructor(s): O. Wucknitz
  Prerequisites: basic understanding of astronomy and gravitational lenses in particular
  Contents: Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling with some emphasis on radio lenses
  Literature:  
  Comments: The format of this seminar is a mixture of more formal presentations and informal discussions.
6967  Seminar on radio astronomy
Do 14, R. 0.05
  Instructor(s): U. Klein, F. Bertoldi, M. Massi, K. Menten
  Prerequisites: Bachelor's level electromagnetics
  Contents: Essentials of Plasmas and Plasma Astrophysics

This seminar course will, as the title says, cover the essentials of plasma physics. Plasmas account for
99% of the ordinary matter in the universe. These ionized gases have temperatures ranging from
several thousand to billion’s of degrees, and densities from 1 to 10^25 particles per cubic
meter. This course surveys the many aspects of plasma physics with an emphasis on space and
astrophysical manifestations and examples. The focus will be on understanding basic plasma
phenomena – single particle motions, fluid description of a plasma (including MHD), plasma waves and
oscillations, instabilities. It will emphasize primarily topics in current astrophysical plasma research
(accretion, jet formation, solar physics), but depending on demand could cover fusion energy or space
weather.
  Literature: Recommended Texts:
Introduction to Plasma Physics and Controlled Fusion, Chen
Introduction to Space Physics, Kivelson
  Comments: Course to be taught by C. Watts, visiting faculty from the University of New Mexico.
6968  Seminar on galaxy clusters
Do 15-16.30, R. 2.09
  Instructor(s): T. Reiprich
  Prerequisites: Introduction to Astronomy.
  Contents: The students will report about up to date research work on galaxy clusters based on scientific papers.
  Literature: Will be provided.
  Comments:  
6961  Seminar on astronomy and astrophysics
Mo 14.00-15.30, HS Astronomie
  Instructor(s): T. Reiprich, F. Bertoldi, J. Kerp, U. Klein, M. Kramer, N. Langer, M. Massi, K. Menten, C. Porciani, P. Schneider, W. Vlemmings, G. Weigelt, O. Wucknitz
  Prerequisites: Lectures: Introduction to Astronomy I and II.
  Contents: Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, galaxy clusters, quasars, cosmology).
  Literature: Current research papers.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminars of the other students and (b) gives a successful presentation. The certificate can be picked up in the office of Ms. Kristina Sörgel on the second floor (room 2.02) at the
end of the semester.

The students will learn to hold a formal but pedagogical presentation about a subject of current international research.

The possible topics will be presented on October 11.