Kommentiertes Vorlesungsverzeichnis Wintersemester 2010/2011 |
![]() |
physics606 | Advanced Quantum Theory Mo 11-13, Th 12, HS I, PI |
|
Instructor(s): | B. Metsch | |
Prerequisites: | Theoretical courses at the Bachelor degree level | |
Contents: |
| |
Literature: |
| |
Comments: | ||
physics607 | Advanced Theoretical Physics Tu 10-12, SR I, HISKP, Th 16, SR II, HISKP |
|
Instructor(s): | U. Meißner, A. Rusetsky | |
Prerequisites: | Quantum Mechanics 1+2, Quantum Field theory 1 | |
Contents: |
| |
Literature: |
| |
Comments: | Language: E/D at the discretion of the audience | |
physics611 | Particle Physics Tu 14-16, Th 8-10, HS, IAP Diplom: WPVEXP, VEXP |
|
Instructor(s): | J. Dingfelder, N. Wermes | |
Prerequisites: | BSc Vorlesung physik511 Physik V (Kerne und Teilchen) | |
Contents: | • Basics notations, kinematics Lorentz systems, Mandelstam variables, cross sections and lifetimes, 2-body and 3-body decays, Colliders and Fixed-target experiments • Quark Model • Phenomena and Experiments in Electromagnetic Interactions • Symmetries and Conservation Laws • Experiments and Detectors • Phenomena and Experiments in Strong Interactions • Phenomena and Experiments in Weak Interactions • (Electro)-Weak Interactions and the Standard Model of Particle Physics | |
Literature: | The lecture does not follow a particular book. A selection of background literature is given below. C. Berger Elementarteilchenphysik D. Griffith Introduction to Elementary Particles D. Perkins Introduction to High Energy Physics A. Seiden Particle Physics: A comprehensive Introduction W.N. Cottingham, An Introduction to the Standard Model D.A. Greenwood of Particle Physic G. Kane Modern Elementary Particle Physics Halzen & Martin Quarks and Leptons P. Schmüser Feyman-Graphen und Eichtheorien für Experimentalphysiker | |
Comments: | This lecture is recommended as the first course for master students interested in (experimental) particle physics. | |
physics612 | Accelerator Physics We 10-12, HS, IAP, Th 10-12, SR I, HISKP Lecture on Th, 14.10.2010 will take place in HS, HISKP Diplom: WPVANG, VANG |
|
Instructor(s): | W. Hillert, A. Lehrach, R. Maier | |
Prerequisites: | Mechanics, Electrodynamics | |
Contents: | Die neuere experimentelle Physik basiert zum Teil auf dem Einsatz von Teilchenbeschleunigern, insbesondere im Bereich der Hochenergiephysik, der Materialforschung und der Erforschung der Substruktur der Atomkerne und der Hadronen. Durch die aktuellen wissenschaftlichen Fragestellungen wurden und werden auch weiterhin ständig gesteigerte Herausforderungen an den Betrieb und die Entwicklung von Teilchenbeschleunigern gestellt, was zum Einsatz modernster Technologien aus einer Vielzahl von physikalischen Bereichen führte (als Beispiele mögen hier der Aufbau einer ca. 27 km langen, fast vollständig supraleitenden Anlage am CERN / Genf oder die Planung eines 1 Angström Röntgenlasers am DESY / Hamburg dienen). Im Zuge dieser Entwicklungen und systematischen Untersuchungen der physikalischen Vorgänge in Beschleunigern entstand die Beschleunigerphysik als eigenständiger Fachbereich der angewandten Physik. Die vorliegende Vorlesung ist eine Einführung in die Beschleunigerphysik. Sie gibt einen Überblick über die verschiedenen Funktionsweisen unterschiedlicher Beschleunigertypen und führt, neben einer physikalischen Behandlung der wichtigsten Subsysteme (Teilchenquellen, Magnete, Hochfrequenzresonatoren), in die transversale und longitudinale Strahldynamik ein. More recent experimental physics is partly based on the use of particle accelerators, especially in high energy physics, materials research and exploration of the substructure of atomic nuclei and hadrons. Due to the current scientific questions, more and more demanding challenges have been and still are posed to the operation and development of particle accelerators, thus leading to the use of state-of-the-art high technology taken from a multitude of fields in physics (as examples may be cited the construction of a 27 km, almost entirely superconducting facility at CERN / Geneva or the planning of a 1 Angström X-ray laser at DESY / Hamburg). In the course of these developments and systematic investigation of the physical processes in particle accelerators, particle accelerator physics emerged as a stand-alone field of applied physics. The present lecture is meant as an introduction into particle accelerator physics. It provides an overview of the various functional principles of different accelerator types and provides, alongside a physical treatment of the most important subsystems (particle sources, magnets, resonant cavities), an introduction into transversal and longitudinal orbit dynamics. Inhaltsverzeichnis / Table of Contents:
| |
Literature: | H. Wiedemann, Particle Accelerator Physics, Springer 1993, Berlin, ISBN 3-540-56550-7 D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN O-471-55163-5 F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, Springer 1996, Berlin, ISBN 3-540-61238-6 K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4 S. Y. Lee, Accelerator Physics (Second Edition), World Scientific, Singapore 2004, ISBN 981-256-200-1 (pbk) ... | |
Comments: | Es besteht die Möglichkeit, den Lernstoff durch detaillierte Besichtigungen und praktische Studien an der Beschleunigeranlage ELSA des Physikalischen Instituts zu veranschaulichen und zu vertiefen. Zu dieser Vorlesung wird ein Script im Internet (pdf-Format, Englisch) zur Verfügung gestellt. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/) The opportunity will be offered to exemplify and deepen the subject matter by detailed visits and practical studies at the institute of physics’ accelerator facility ELSA. Accompanying the lecture, a script (pdf-format, english) will be provided on the internet. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/) | |
physics618 | Physics of Particle Detectors Tu 8-10, Th 14, SR I, HISKP Diplom: WPVEXP, VEXP |
|
Instructor(s): | K.-T. Brinkmann | |
Prerequisites: | - basic knowledge of electronics (electromagnetics and circuitry) helpful - elementary knowledge of particle and nuclear physics useful | |
Contents: | 1. Introduction Detection of charged and neutral radiation with optimum resolution Measurement of particle properties Applications in medicine and biology Examples of specific detector types 2. Interaction of Radiation with Matter Fundamentals: Cross Section, Absorption Interaction of charged particles with matter Interaction of photons with matter 3. Detectors for ionizing particles (ionization detectors) 3.1. Principles of ionisation detectors 3.2. Gas-filled Ionisation Detectors 3.3. Semiconductor Detectors 4 Cerenkov Detectors 5 Transition Radiation Detectors 6 Scintillation Detectors 7 Calorimeters 7.1 Electromagnetic Calorimeters 7.2 Hadron Calorimeters | |
Literature: | W.R. Leo Techniques for Nuclear and Particle Physics Experiments Springer, paperback , 1996 ~ 70 € ISBN: 0387572805 C. Grupen Teilchendetektoren BI Wissenschaftsverlag, 1993 T. Ferbel Experimental Techniques in High Energy Nuclear and Particle Physics World Scientific Singapore, 1991 G. Knoll Radiation Detection and Measurement John Wiley, 2000, Neuauflage 2002 G. Lutz Semiconductor Radiation Detectors ~ 100 € Springer, 1999 ISBN: 3-540-64859-3 L. Rossi, P. Fischer, Pixel Detectors: From Fundamentals to Applications T. Rohe, N. Wermes Springer, 2006 ISBN: 3-540-28332-3 119 € | |
Comments: | Particle detectors will be discussed with emphasis on the underlying physics concepts and elementary particle interactions. Some basic understanding of the electronics used in the detection and the effects that determine the quality of detection such as fluctuations and noise contributions will be communicated. This lecture is a prerequisite for students whose main interest is experimental particle, hadron and nuclear physics. It is also useful for students interested in medical imaging detectors. | |
physics614 | Laser Physics and Nonlinear Optics Tu 8-10, Th 14-16, HS, IAP Diplom: WPVEXP, VEXP |
|
Instructor(s): | K. Buse, D. Haertle | |
Prerequisites: | Bachelor in Physics or "Physik-Vordiplom" | |
Contents: | Laser Basics (introduction, principle of a laser, history, properties and applications of laser light, fundamentals: absorption and emission of light, two-level system, rate equations, small-signal amplification, laser threshold, dynamics of a two-level laser, line width, three and four level lasers, resonators [overview, matrix approach for calculation of optical systems, stability criterion]) Waveguides (slab waveguides, Fresnel formulas and total internal reflection, phase-matching and modes, effective refractive indices, BV diagram, field distribution, measurements of mode patterns and effective refractive indices) Mirrors (metal and dielectric mirrors, phase-conjugating mirrors, Bragg mirrors [coupled-wave theory]) Laser modes (longitudinal modes, Gaussian beams, transversal modes, whispering gallery modes, mode selection, M2 number) Coherence (temporal coherence, spatial coherence, intensity enhancement) Generation of laser pulses (continuous-wave and pulsed lasers – a review, spiking, Q-switching, mode-locking, pulse compression) Gas lasers (atom lasers: general remarks, multiple-electron atoms, metal vapor lasers, argon-ion lasers, krypton-ion lasers, nitrogen laser, excimer lasers, carbon-dioxide lasers) Semiconductor lasers (history, relevance, key parameters, direct and indirect semiconductors, threshold current and output power, heterostructure lasers, Kramers-Kronig relations, distributed-feedback lasers, manufacturing of semiconductor lasers) Solid state lasers (general remarks, ruby laser, neodymium yttrium garnet laser, erbium laser, tunable solid-state lasers, color-center lasers) Unusual lasers (dye lasers, free-electron lasers, X-ray lasers, chemical lasers, atom lasers) Manipulation of laser light (intensity, polarization, phase, color) Applications (review, material processing, telecommunication and multimedia, optical metrology) | |
Literature: | "Laser", Fritz Kurt Kneubühl and Markus Werner Sigrist, Teuber-Verlag 2008 "Photonics: Optical Electronics in Modern Communication", Amnon Yariv and Pochi Yeh, Oxford University Press, 2006 | |
Comments: | The language will be English if one or more participants require this. Otherwise the course will be given in German. | |
physics619 | Applied Photonics Tu 12, Th 10-12, HS, IAP Diplom: WPVANG, VANG |
|
Instructor(s): | S. Linden | |
Prerequisites: | ||
Contents: | "Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification, and most importantly, its utilisation for the benefit of mankind." Contents of the course:
| |
Literature: | A script of the lectures will be provided. | |
Comments: | ||
physics615 | Theoretical Particle Physics Tu 16-18, Fr 12, HS I, PI Diplom: WPVTHE, VTHE |
|
Instructor(s): | H.-P. Nilles | |
Prerequisites: | Quantum mechanics, Basic knowledge of quantum field theory and group theory, basics of particle physics phenomena | |
Contents: | Classical field theory, gauge theories , Higgs mechanism, Standard model of strong and electroweak interactions, Grand unification, Neutrino physics, Introduction to supersymmetry | |
Literature: | T.P. Cheng and L.F. Li, Gauge theories of elementary particle physics, Clarendon Press, 1984 M.E. Peskin and D. Schroeder, An introduction to quantum field theory, Addison Wesley, 1995 J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, 1992 | |
Comments: | Language will be English or German at the discretion of the audience. First lecture will take place on Tuesday, October 12th (4pm, HS1, PI). there will be exercises in groups (first meeting after the first lecture on October 12th). | |
physics616 | Theoretical Hadron Physics We 8-10, Th 15, SR I, HISKP Diplom: WPVTHE, VTHE |
|
Instructor(s): | H.-W. Hammer | |
Prerequisites: | Quantum Mechanics, Advanced Quantum Theory | |
Contents: |
| |
Literature: |
| |
Comments: | A basic knowledge of Quantum Field Theory is useful. | |
physics717 | High Energy Physics Lab 4 to 6 weeks on agreement |
|
Instructor(s): | E. von Törne | |
Prerequisites: | ||
Contents: | This course offers students in their first year of their Master studies the opportunity to participate in research activities. | |
Literature: | ||
Comments: | The students join one of the high energy physics groups groups and conduct their own small research project for typically 4 weeks. We recommend to participate in a project during term break (either in spring or summer/ early fall) but projects during the semester are also possible. More information here: http://heplab.physik.uni-bonn.de/ | |
physics719 | BCGS intensive week on detectors and readout electronics (Advanced topics in high energy physics) |
|
Instructor(s): | M. Barbero, F. Hügging, A. Kruth, E. von Törne | |
Prerequisites: | introductory lecture in electronics | |
Contents: | * Overview: research in detector development at U. of Bonn * General detector physics * Silicon detectors * Low-noise readout electronics * CMOS chip design with Cadence * Detectors for the Large Hadron Collider (LHC) and Super-LHC * Verilog * Radiation effect in semi-conductors and mitigation * Silicon devices with serial powering * Simulation of circuits with PSpice * Hands-on activities: Chipdesign in 180 nm technology * Programming of FPGA hardware in Verilog | |
Literature: | ||
Comments: | More information here: http://www.uni-bonn.de/~etoerne/teaching/intensive-week10/ | |
physics732 | Optics Lab 4 to 6 weeks on agreement |
|
Instructor(s): | K. Buse, M. Fiebig, D. Meschede, F. Vewinger, M. Weitz | |
Prerequisites: | ||
Contents: | The Optics Lab is a 4-6 week long practical training/internship in one of the research groups in Photonics and Quantum Optics, which can have several aspects: - setting up a small experiment - testing and understanding the limits of experimental components - simulating experimental situations Credit points can be obtained after completion of a written report. | |
Literature: | Will be given by the supervisor | |
Comments: | ||
physics737 | BCGS Intensive Week: Advanced Topics in Photonics and Quantum Optics February/March 2011 |
|
Instructor(s): | K. Buse, I. Breunig | |
Prerequisites: | Bachelor in Physics or "Vordiplom" | |
Contents: | CHANGING THE COLOR OF LIGHT: Nonlinear-optical frequency conversion from the visible to the terahertz range The intensive week contains focused lectures, seminar talks given by the participants, as well as advanced practical training. Lectures and seminar talks in the morning will provide the fundamentals of nonlinear optics needed in order to understand how to build devices that change the color of light. In the afternoon we will teach how to work successfully in an advanced laser laboratory. In order to give all participants enough hands-on experience, two setups will be built and tested: an optical parametrical oscillator and a terahertz spectroscopy system. ÄNDERUNG DER FARBE DES LICHTS: Nichtlinearoptische Frequenzkonversion vom Sichtbaren bis zum Terahertzbereich In der „Intensive Week“ werden Spezialvorlesungen, Seminarvorträg der teilnehmenden Studierenden sowie anspruchsvolle Experimente in Laserlaboren angeboten: An den Vormittagen vermitteln Vorlesungen und Seminarvorträge die Grundlagen der nichtlinearen Optik, um zu verstehen, wie die Farbe von Licht verändert werden kann. An den Nachmittagen führen wir in die Arbeit in einem Forschungs-Laserlabor ein. Damit alle Teilnehmer viele Möglichkeiten zum Experimentieren erhalten, werden zwei Aufbauten realisiert: ein optischer parametrischer Oszillator und ein Terahertz-Spektroskopie-System. | |
Literature: | Literature information will be provided during the course | |
Comments: | The intensive week will take place from February 21–26, 2011. The language will be English if one or more participants require this. Participation is limited to 12 students, and the slots will be allocated based on the first-come-first-served principle. Thus an early application is recommended. In the case of questions: Please contact Dr. Ingo Breunig, Wegelerstr. 8, Tel. (0228) 73 2575, e-mail breunig@physik.uni-bonn.de. | |
physics739 | Ultracold atoms and many-body physics Tu 10-12, Th 12-14, HS, IAP |
|
Instructor(s): | D. Meschede, A. Rosch (Köln) | |
Prerequisites: | Basic physics education | |
Contents: | This lecture will present an introduction into both the experimental and theoretical aspects of ultracold atoms and many-body physics. The lecture will be held jointly by D. Meschede (experiment) and A. Rosch (theory). Topics will include: Experimental production and control of ultracold gases; fundamental theoretical aspects of interacting many-body systems; Bose-Einstein condensation; superfluidity; Feshbach resonances; vortices; transport phenomena; quantum magnetism; | |
Literature: | ||
Comments: | Technical details, including organization of the two lecture halls and the exercise sessions, will by discussed during the first lecture. | |
physics740 | Hands-on Seminar: Experimental Optics and Atomic Physics Mo 9-11 or Mo 11-13, laboratories of the research group, IAP |
|
Dozent(en): | M. Weitz u.M. | |
Erforderliche Vorkenntnisse: | Optik- und Atomphysik Grundvorlesungen, Quantenmechanik | |
Inhalt: | Diodenlaser Optische Resonatoren Akustooptische Modulatoren Spektroskopie Radiofrequenztechnik Spannungsdoppelbrechung und vieles mehr | |
Literatur: | wird gestellt | |
Bemerkungen: | Vorbesprechung am Montag, den 18.10.10, 9 Uhr c.t. im IAP-Konferenzraum (3. Stock) Seminartermin Mo 9 Uhr s.t. ab 8.11.10 | |
physics751 | Group Theory We 10-13, HS, HISKP |
|
Instructor(s): | A. Nogga, A. Wirzba | |
Prerequisites: | quantum mechanics, some knowledge of linear algebra | |
Contents: |
| |
Literature: |
| |
Comments: | ||
physics752 | Superstring Theory Mo 10-12, Tu 12, SR II, HISKP |
|
Instructor(s): | S. Förste, A. Klemm | |
Prerequisites: | String Theory I, Quantum Field Theory, General Relativity | |
Contents: | Superstring, Heterotic String, Type IIA/B String, Type I String, Compactification Schemes and Effective Actions, Gauge Theory and String Theory, Amplitudes, M-Theory, F-Theory, | |
Literature: | D. Lust, S. Theisen, Lectures on String Theory (Springer, New York 1989) M. Green, J. Schwarz, E. Witten, Superstring Theory 1+2 (Cambridge Univiversity Press 2003) J. Polchinski, String Theory 1+2 (Cambridge University Press, 2005) E. Kiritsis: ``String Theory in a Nutshell'' (Princeton University Press, 2007) | |
Comments: | ||
physics760 | Computational Physics Fr 14-16, SR I, HISKP |
|
Instructor(s): | C. Urbach | |
Prerequisites: | Knowledge of a modern programming language Quantum mechanics, statistical physics | |
Contents: |
| |
Literature: |
| |
Comments: | for passing this module students will need to present an independently completed project | |
physics761 | Supersymmetry Mo 13, Th 13-15, HS I, PI |
|
Instructor(s): | H. Dreiner | |
Prerequisites: | Particle Physics course | |
Contents: | This lecture is intended for experimentalists and theorists. After a longer introduction into supersymmetry, I will discuss the prospects for the LHC. | |
Literature: | Books Aitchison Drees et al Baer and Tata Papers S. Martin, Primer | |
Comments: | ||
physics772 | Physics in Medicine I: Fundamentals of Analyzing Biomedical Signals Mo 9-11, We 12, SR I, HISKP |
|
Instructor(s): | K. Lehnertz | |
Prerequisites: | Vordiplom, Bachelor | |
Contents: | Introduction to the theory of nonlinear dynamical systems - regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals - selected examples of nonlinear dynamical systems and their characteristics (model and real world systems) - selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality) Time series analysis - linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function, autoregressive modeling - univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents, entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity Applications - nonlinear analysis of biomedical time series (EEG, MEG, EKG) | |
Literature: | M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988. H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York, 1989 E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993 H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003 A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001 | |
Comments: | Beginning: Mo, Oct 11, 9:00 ct | |
physics651 | Seminar on Current Topics in Experimental Particle Physics Mo 11-13, Zi. 300, PI |
|
Instructor(s): | I. Brock, K. Desch, E. von Törne, N. Wermes u.M. | |
Prerequisites: | Introductory particle physics course. Physics611 (Particle Physics) can be heard in parallel. | |
Contents: | Topics for seminars: Physics and detectors at hadron colliders Detection techniques and detectors Production of W and Z bosons at LHC Higgs physics Physics of the top quark Supersymmetry searches Extra Dimension Phenomena | |
Literature: | Will be distributed. | |
Comments: | Seminar will be in English or German depending on attendance. | |
physics653 | Seminar on "Topics in Quantum Technology -- from Quantum Optics to Condensed Matter" Tu 14-16, Konferenzraum, IAP |
|
Instructor(s): | D. Meschede | |
Prerequisites: | For master's students and advanced bachlor's students. | |
Contents: | The seminar will present topics in "Quantum Technology", mostly from the fields of quantum optics and adjacent fields. A preliminary list of potential topics is: Quantum Simulation Cavity and Circuit QED Quantum Repeater Quantum Key Distribution Quantum Imaging Quantum Walks Electromagnetically Induced Transparency Quantum Memories Quantum Oscillators Optical Microcavities | |
Literature: | Will be handed out individually. | |
Comments: | Candidates who would like to start early working on their subject may sign up for a topic already now. | |
physics656 | Computational Physics Seminar on Analyzing Biomedical Signals Mo 14-16, SR I, HISKP |
|
Instructor(s): | K. Lehnertz, B. Metsch | |
Prerequisites: | Vordiplom, Bachelor, basics of programming language (e.g., Fortran, C, C++, Pascal) | |
Contents: | - time series: chaotic model systems, noise, autoregressive processes, real world data - generating time series: recursive methods, integration of ODEs - statistical properties of time series: higher order moments, autocorrelation function, power spectra, corsscorrelation function - state-space reconstruction (Takens theorem) - characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic algorithms, influencing factors, correction schemes) - testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation - nonlinear noise reduction - measuring synchronisation and interdependencies | |
Literature: | - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003 - A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001 - WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press - see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/ | |
Comments: | Location: Seminarraum I, HISKP Time: Mo 14 - 16 and one lecture to be arranged Beginning: Mo October 11 | |
physics657 | Seminar on Topics in String Theory Fr 14-16, Konferenzraum II, Zi. 166, PI |
|
Instructor(s): | S. Förste, A. Klemm | |
Prerequisites: | ||
Contents: | special topics in string theory | |
Literature: | ||
Comments: | first meeting in second week of term | |
6805 | Laboratory in the Research Group (specifically for members of BIGS) General introduction at the beginning of the term, see special announcement |
|
Instructor(s): | Dozenten der Physik | |
Prerequisites: | Two years of physics studies (Dipl., B.Sc.) | |
Contents: | Practical training/internship in the research group can have several aspects: --- setting up a small experiment --- testing and understanding the limits of experimental components --- simulating experimental situations | |
Literature: | Will be given individually | |
Comments: | The minimum duration is 30 days, or 6 weeks. Projects are always available. In order to obtain credit points, a report (3-10 pages) is required. No remuneration is paid for this internship. | |
6820 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente an nanostrukturierten Materialien; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe pr, ganztägig, Dauer: n. Vereinb. 4-6 Wochen, PI |
|
Dozent(en): | S. Linden | |
Erforderliche Vorkenntnisse: | ||
Inhalt: | Das Praktikum in der Arbeitsgruppe erlaubt einen Einblick in die spannende Welt der Nanophotonik. | |
Literatur: | ||
Bemerkungen: | ||
6823 | Praktikum in der Arbeitsgruppe: Polarisiertes Target / Laboratory in the Research Group: Polarized Target (D/E) http://polt05.physik.uni-bonn.de pr, ganztägig, Dauer n. Vereinb., PI |
|
Instructor(s): | H. Dutz, S. Goertz u.M. | |
Prerequisites: | Grundlagen in Thermodynamik, Quantenmechanik und Festkörperphysik | |
Contents: | Studenten sollen in 4 Wochen einen Einblick in die Forschungen der Arbeitgruppe erhalten. Thema: Forschung und Entwicklung rund ums Polarisierte Target Einführung in die aktuellen Forschungsaktivitäten der Gruppe als da sind: Entwicklung und Bau spezieller Targetkryostate, Entwicklung neuartiger so genannter 'interner' supraleitender Magnete, Forschung an neuartigen Targetmaterialien und ihre Diagnostik. Es wird die Gelegenheit geboten, ein kleines Forschungsprojekt selber durchzuführen und hierüber der Gruppe zu berichten. | |
Literature: | wird gestellt | |
Comments: | Das Praktikum soll interessierten Studenten die Möglichkeit zu praktischen Erfahrungen auf dem Gebiet des Polarisierten Festkörpertargets für teilchenphysikalische Experimente bieten. Depending on the students' preferences the course is given in German or in English. | |
6826 | Praktikum in der Arbeitsgruppe (SiLab): Halbleiterdetektoren und ASIC Chips für Experimente der Teilchenphysik und biomedizinische Anwendungen / Research Internship: Semiconductor Detectors and ASIC Chips for Particle Physics and Biomedical Applications (D/E) (http://hep1.physik.uni-bonn.de) pr, ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., PI |
|
Instructor(s): | F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M. | |
Prerequisites: | Lectures on detectors and electronics lab course | |
Contents: | Research Internship: Students shall receive an overview into the activities of a research group: here: Development of Semiconductor Pixel Detectors and Micro-Electronics | |
Literature: | will be handed out | |
Comments: | early aplication necessary | |
6828 | Praktikum in der Arbeitsgruppe: Analyse von Elektron-Proton (ZEUS) bzw. Proton-Proton (ATLAS) Streuereignissen / Laboratory in the Research Group: Analysis of Electron-Proton (ZEUS) or Proton-Proton (ATLAS) Scattering Events (D/E) pr, ganztägig, 3-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., Applications to brock@physik.uni-bonn.de, PI |
|
Instructor(s): | I. Brock u.M. | |
Prerequisites: | Introductory particle physics course | |
Contents: | Introduction to the current research activities of the group (physics analysis with data from ZEUS (HERA) and ATLAS (LHC)), introduction to data analysis techniques for particle reactions, opportunity for original research on a topic of own choice, with concluding presentation to the group. | |
Literature: | Working materials will be provided. | |
Comments: | The course aims to give interested students the opportunity for practical experience in our research group and to demonstrate the application of particle physics experimental techniques. Depending on the students' preferences the course will be given in German or in English. | |
6830 | Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie |
|
Instructor(s): | K. Lehnertz u.M. | |
Prerequisites: | basics of programming language (e.g. C, C++, Pascal) | |
Contents: | This laboratory course provides insight into the current research activities of the Neurophysics group. Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group. | |
Literature: | Working materials will be provided. | |
Comments: | Contact: Prof. Dr. K. Lehnertz email: klaus.lehnertz@ukb.uni-bonn.de | |
6835 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer Experimente aus den Gebieten dielektrische Nanopartikel und ferroelektrische Domänen, Flüstergaleriemoden-Resonatoren, Nichtlineare Optik und Terahertz-Wellen, Rasterkraftmikroskopie; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe / Laboratory internship in the research group: preparation and conduction of optical experiments in the fields dielectric nanoparticles and ferroelectric domains, whispering-gallery-mode resonators, nonlinear optics and terahertz waves, scanning force microscopy; contributions to ongoing projects of the research group (D/E) http://www.hertz.physik.uni-bonn.de/ pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI |
|
Instructor(s): | K. Buse u.M. | |
Prerequisites: | Vordiplom oder äquivalente Leistungen im Bachelor-Studium | |
Contents: | Die Arbeitsgruppe ist auf drei Gebieten tätig: Dielektrische Nanokristalle und ihre optischen Eigenschaften, ferroelektrische Domänen sowie Nichtlineare Optik – insb. optische parametrische Oszillatoren und Terahertz-Erzeugung. Zu diesen Themengebieten können Praktika in der Arbeitsgruppe durchgeführt werden. The research group is active in the following three areas: dielectric nano crystals and their optical properties, ferroelectric domains, as well as nonlinear optics – in particular optical parametrical oscillators and terahertz generation. We offer internships related to these topics. | |
Literature: | wird zur Verfügung gestellt | |
Comments: | keine | |
6836 | Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E) pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP |
|
Instructor(s): | D. Meschede u.M. | |
Prerequisites: | Two years of physics studies (undergraduate/ bachelor program) | |
Contents: | Practical training in the research group can have several aspects: --- setting up a small experiment --- testing and understanding the limits of experimental components --- simulating experimental situations The minimum duration is 30 days, or 6 weeks. | |
Literature: | will be individually handed out | |
Comments: | Projects are always available. See our website. | |
6837 | Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E) pr, ganztägig, 2-6 Wochen n. Vereinb., IAP |
|
Instructor(s): | M. Weitz u.M. | |
Prerequisites: | Vordiplom, Quantenmechanik-Vorlesung | |
Contents: | Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache. | |
Literature: | wird gestellt | |
Comments: | Homepage der Arbeitsgruppe: http://www.iap.uni-bonn.de/ag_weitz/Bonn_AG_Quantenoptik.html | |
6938 | Astronomical interferometry and digital image processing Mi 15.30-17, HS 0.02, MPIfR |
|
Instructor(s): | G. Weigelt | |
Prerequisites: | No | |
Contents: | Wave optics, statistical optics, astronomical imaging, digital image processing, astronomical interferometry in the infrared, spectro-interferometry, infrared interferometry of young stellar objects, stars in late evolutionary stages, and active galactic nuclei | |
Literature: | J.W. Goodmann, Statistical Optics (Wiley Interscience) J.W. Goodmann, Fourier Optics (McGraw Hill) | |
Comments: | ||
6939 | Submillimeter astronomy Do 11-13, HS 0.01, MPIfR Exercises arranged by appointment |
|
Instructor(s): | K. Menten, F. Bertoldi | |
Prerequisites: | Basic knowledge of astronomy | |
Contents: | Students with a basic background in astronomy and physics will be introduced to astronomy in the sub-millimeter wavelength range, one of the last spectral regions to be fully explored with new high-altitude ground-based and airborne telescopes and from space. The basic concepts of emission/excitation mechanisms from interstellar dust and molecules are discussed as well as the properties of the observed objects: amongst others, the dense interstellar medium, star-forming regions, and circumstellar environments. Star formation in our own and in other galaxies as well as in the Early Universe is a central focus of sub-millimeter astronomy and will thus be introduced in depth. Telescopes, instrumentation, and observational techniques will discussed in the course, with an emphasis on those with a strong Bonn participation: APEX, NANTEN2, Herschel, SOFIA, ALMA. | |
Literature: | We shall provide references to contemporary review articles and recommend textbooks. | |
Comments: | The course will be taught in English unless all students prefer German. | |
6943 | The Physics of Dense Stellar Systems: the building blocks of the universe Di 10-12, R. 3.19 Exercises arranged by appointment |
|
Instructor(s): | P. Kroupa | |
Prerequisites: | Vordiploma or BSc in physics | |
Contents: | Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations, Focker-Planck equation, dynamical states, relaxation, mass segregation, evaporation, ejection, core collapse. Formal differentiation between star clusters and galaxies. Binary stars as energy sinks and sources. Star-cluster evolution. Cluster birth, violent relaxation. Birth of dwarf galaxies. | |
Literature: | 1) Lecture notes will be provided. 2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988) 3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003) | |
Comments: | Aims: To gain a deeper understanding of stellar dynamics, the birth and origin of stellar populations and the fundamental building blocks of galaxies. This course corresponds to course astro853 in the M.Ap. programme. Start: Tuesday, 12.10.2010, 10:15 | |
6944 | Numerical gravitational dynamics Do 15-17, R. 3.19 Exercises arranged by appointment |
|
Instructor(s): | J. Pflamm-Altenburg | |
Prerequisites: | Vordiploma or BSc in physics | |
Contents: | The aim of this course is to impart knowledge how different stellar dynamical systems such as planetary systems, non-hierarchical few-body systems, star clusters and galaxies are integrated numerically. The students will learn what kind of algorithms are used to integrate a particular stellar system as well as how to use state of the art software for scientific research. | |
Literature: | 1) Lecture notes will be provided. 2) S.J. Aarseth: Gravitational N-body Simulations: Tools and Algorithms (Cambridge University Press, 2003). | |
Comments: | This course corresponds to course astro854 in the M.Ap. programme. Start: Thursday 14.10., 15 c.t. | |
6945 | Star formation Mi 10-12, HS 0.01, MPIfR |
|
Instructor(s): | B. Parise | |
Prerequisites: | basic astronomy | |
Contents: | Introduction to ISM and Star Formation -- Physical processes -- Interstellar Chemistry -- Conditions for star formation: cloud collapse -- Protostellar Evolution -- Low Mass/High Mass Star formation -- Jets and Outflows/Disks -- Shocks, PDRs -- IMF, Global SF -- Starburst Galaxies -- Star formation history of the Universe | |
Literature: | S. W. Stahler, F. Palla: The Formation of Stars, Wiley 2004 N. Schulz: From Dust to Stars, Springer 2005 Reipurth, Jewitt, Keil (Edts.): Protostars and Planets V. University of Arizona Press 2007. A.G.G.M. Tielens: The Physics and Chemistry of the interstellar medium. | |
Comments: | ||
6946 | Quasars and microquasars Do 9-10.30, HS 0.01, MPIfR |
|
Instructor(s): | M. Massi | |
Prerequisites: | ||
Contents: | Stellar-mass black holes in our Galaxy mimic many of the phenomena seen in quasars but at much shorter timescales. In these lectures we present and discuss how the simultaneous use of multiwavelength observations has allowed a major progress in the understanding of the accretion/ejection phenomenology. T.1 Microquasars and Quasars Definitions Stellar evolution, white dwarf, neutron star, BH T.2 Accretion power in astrophysics Nature of the mass donor: Low and High Mass X-ray Binaries Accretion by wind or/and by Roche lobe overflow Eddington luminosity Mass function: neutron star or black hole ? T.3 X-ray observations Temperature of the accretion disc and inner radius Spectral states Quasi Periodic Oscillations (QPO) T.4 Radio observations Single dish monitoring and VLBI Superluminal motion (review, article) Doppler Boosting Synchrotron radiation Plasmoids and steady jet T.5 AGN | |
Literature: | Literature references will be provided during the course http://www.mpifr-bonn.mpg.de/staff/mmassi/#microquasars1 | |
Comments: | ||
6947 | Practical radio interferometry Mi 13-16, HS 0.05 |
|
Instructor(s): | W. Vlemmings, F. Bertoldi, O. Wucknitz | |
Prerequisites: | None, though Basic Radio Astronomy would be a plus. | |
Contents: | This lecture series is intended for all Master-level or PhD students, postdocs and grown-up astronomers who are interested to learn more about the practical issues involved in reducing radio-interferometric data. After basic introduction lectures, the course will consist of specialized lectures and practical sessions that use several data analysis tools (AIPS and CASA). | |
Literature: | ''Synthesis Imaging in Radio Astronomy II'' (ASP Conference Series, V. 180, 1998), Editors: Taylor, Carilli, Perley Interferometry and Synthesis in Radio Astronomy (Wiley 2001), by Thompson, Moran, Swenson | |
Comments: | ||
6949 | Physics of supernovae and gamma-ray bursts Mi 13.30 - 15.00, HS Astronomie |
|
Instructor(s): | S. Yoon | |
Prerequisites: | Some knowledge on stellar evolution is desirable, but not required. | |
Contents: | In this course, the following topics will be addressed: - Basic physics on stellar death - Type Ia supernova, and its application to cosmology - Core collapse supernova: observation and theory - Gamma-ray bursts: observation and theory - Implications for massive star population/star-formation in extra-galaxies - Supernova nucleosynthesis and chemical evolution of galaxies - Probe of the early universe with supernovae and gamma-ray bursts | |
Literature: | Key references will be given for each course, while some courses will be based on "Introduction to High-Energy Astrophysics" by Stephan Rosswog & Marcus Brueggen, (Cambridge Univ. Press). See the lecture homepage for more details. | |
Comments: | The lecture will start on Oct. 20, 2010. The grade will be based on homework (50%) and an exam (50%). | |
6936 | Cosmology Mo 16-19, HS 0.02, MPIfR VAST Exercises: 1 hr in groups |
|
Instructor(s): | P. Schneider, C. Porciani | |
Prerequisites: | Very helpful: The introductory course in astronomy. Knowledge of the physics courses up to the Vordiplom are assumed; furthermore, we need some material from Thermodynamics/Statistical Physics. | |
Contents: | Introduction and overview; The isotropic Universe; Introduction to General Relativity; Cosmological solutions of Einstein's equations; Thermal history of the Universe; Gravitational Lensing; Weak Gravitational Lensing; Structure Formation in the Universe; CMB anisotropies; Inflation; Cosmic shear; Galaxy formation The course concentrates on the aspects of the formation of structure in the Universe, how these are related to observations, and how cosmological parameters can be determined. The lecture specifically highlights recent observational results in cosmology. | |
Literature: | Lecture notes will be distributed; additional text books for further reading will be mentioned at the beginning of the course. A lower-level presentation of some of the material, which might be helpful as preparation, can be found in Chaps. 4, 7 and 8 of P. Schneider: `Extragalactic Astronomy and Cosmology', Springer-Verlag, 2006. | |
Comments: | ||
6937 | Radio astronomy: tools, applications, and impacts Di 16, Do 16-18, HS Astronomie VAST Exercises: Mo 12, R. 0.05 |
|
Instructor(s): | U. Klein | |
Prerequisites: | electrodynamics interstellar medium | |
Contents: | 1. Introduction history astrophysics and radio astronomy 2. Single-dish telescopes Cassegrain and Gregory foci geometries and ray tracing antenna diagrams antenna parameters 3. Fourier optics Fourier transform aperture – farfield relations spatial frequencies and filtering power pattern convolution and sampling resolving power 4. Influence of earth’s atmosphere ionosphere, troposphere plasma frequency Faraday rotation refraction, scintillation absorption / emission radiation transport 5. Receivers total-power and heterodyne systems system temperature antenna temperature, sensitivity Dicke-, correlation receiver amplifiers hot-cold calibration 6. Wave propagation in conductors coaxial cables, waveguides matching, losses quasi optics 7. Backend continuum, IF-polarimeter spectroscopy filter spectrometer autocorrelator acousto-optical spectrometer pulsar backend 8. mm and submm techniques telescope parameters and observables atmosphere, calibration, chopper wheel error beam SIS receivers bolometers 9. Single-dish observing techniques on-off, cross-Scan, Raster continuous mapping, OTF, fast scanning frequency-switching, wobbling technique 10. Data analysis sampling theorem spectroscopy multi-beam observations image processing, data presentation 11. Interferometry basics aperture - image plane complex visibility delay tracking fringe rotation sensitivity 12. Imaging Fourier inversion cleaning techniques self-calibration zero-spacing correction 13. VLBI station requirements processor calibration and imaging retarded baselines geodesy 14. Spectroscopy XF and FX correlation data cubes 15. Polarimetry cross dipoles circular feeds spurious polarization 16. Future developments and science projects, telescopes LOFAR, SKA, ALMA, SOFIA, Planck impacts: ISM, IGM, cosmology ... | |
Literature: | Radio Astronomy: Tools, Applications & Impacts Lecture Notes, U. Klein (for free) Tools of Radio Astronomy Kristen Rohfs, Thomas L. Wilson Springer Radio Astronomy John D. Kraus Cygnus-Quasar Books The Fourier Transform and its Applications Ronald N. Bracewell McCraw-Hill Book Company | |
Comments: | ||
6962 | Seminar on theoretical dynamics Fr 14-16, R. 3.19 or arranged by appointment |
|
Instructor(s): | P. Kroupa, J. Pflamm-Altenburg | |
Prerequisites: | Diploma or BSc in physics. | |
Contents: | Formation of planetary and stellar systems; Stellar populations in clusters and galaxies; Processes governing the evolution of stellar systems. | |
Literature: | Current research papers and own research. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester. Students and post-docs present the current state of their own research to a critical audience. Start date: after arrangement | |
6963 | Seminar on stars, stellar systems, and galaxies Di 16-18, R. 3.19 |
|
Instructor(s): | P. Kroupa, N. Langer, J. Pflamm-Altenburg | |
Prerequisites: | Vordiplom or Bachelor in physics; The lecture "Stars and Stellar Evolution" (astro811); The lecture "Astrophysics of Galaxies" (astro821) | |
Contents: | The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics; current and preliminary research results by AIfA members and guests on the above topics. | |
Literature: | Latest astro-ph pre-prints, or recently published research papers. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up in the office of Mrs Elisabeth Danne on the third floor (AIfA) at the end of the semester. The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research. This is course astro893 in the Masters of Astrophysics programme. | |
6965 | Seminar on strong gravitational lensing and lens modelling Fr 16-18, R. 3.19 |
|
Instructor(s): | O. Wucknitz | |
Prerequisites: | basic understanding of astronomy and gravitational lenses in particular | |
Contents: | Research seminar: current research papers and own projects in strong gravitational lensing and lens modelling with some emphasis on radio lenses | |
Literature: | ||
Comments: | The format of this seminar is a mixture of more formal presentations and informal discussions. | |
6967 | Seminar on radio astronomy Do 14, R. 0.05 |
|
Instructor(s): | U. Klein, F. Bertoldi, M. Massi, K. Menten | |
Prerequisites: | Bachelor's level electromagnetics | |
Contents: | Essentials of Plasmas and Plasma Astrophysics This seminar course will, as the title says, cover the essentials of plasma physics. Plasmas account for 99% of the ordinary matter in the universe. These ionized gases have temperatures ranging from several thousand to billion’s of degrees, and densities from 1 to 10^25 particles per cubic meter. This course surveys the many aspects of plasma physics with an emphasis on space and astrophysical manifestations and examples. The focus will be on understanding basic plasma phenomena – single particle motions, fluid description of a plasma (including MHD), plasma waves and oscillations, instabilities. It will emphasize primarily topics in current astrophysical plasma research (accretion, jet formation, solar physics), but depending on demand could cover fusion energy or space weather. | |
Literature: | Recommended Texts: Introduction to Plasma Physics and Controlled Fusion, Chen Introduction to Space Physics, Kivelson | |
Comments: | Course to be taught by C. Watts, visiting faculty from the University of New Mexico. | |
6968 | Seminar on galaxy clusters Do 15-16.30, R. 2.09 |
|
Instructor(s): | T. Reiprich | |
Prerequisites: | Introduction to Astronomy. | |
Contents: | The students will report about up to date research work on galaxy clusters based on scientific papers. | |
Literature: | Will be provided. | |
Comments: | ||
6961 | Seminar on astronomy and astrophysics Mo 14.00-15.30, HS Astronomie |
|
Instructor(s): | T. Reiprich, F. Bertoldi, J. Kerp, U. Klein, M. Kramer, N. Langer, M. Massi, K. Menten, C. Porciani, P. Schneider, W. Vlemmings, G. Weigelt, O. Wucknitz | |
Prerequisites: | Lectures: Introduction to Astronomy I and II. | |
Contents: | Current research papers on astrophysical problems (e.g. planet formation, stellar evolution, star clusters, galaxies, galaxy clusters, quasars, cosmology). | |
Literature: | Current research papers. | |
Comments: | This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminars of the other students and (b) gives a successful presentation. The certificate can be picked up in the office of Ms. Kristina Sörgel on the second floor (room 2.02) at the end of the semester. The students will learn to hold a formal but pedagogical presentation about a subject of current international research. The possible topics will be presented on October 11. |