.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Wintersemester 2013/2014

Logo der Fachgruppe Physik-Astronomie der Universität Bonn


physics611  Particle Physics
Tu 13, Th 8-10, HS I, PI
Diplom: WPVEXP, VEXP
  Instructor(s): H. Schmieden
  Prerequisites: BSc Vorlesung physik511 Physik V (Kerne und Teilchen)
  Contents: • Basics
notations, kinematics Lorentz systems, Mandelstam variables,
cross sections and lifetimes, 2-body and 3-body decays, Colliders and
Fixed-target experiments

• Quark Model

• Phenomena and Experiments in Electromagnetic Interactions

• Symmetries and Conservation Laws

• Experiments and Detectors

• Phenomena and Experiments in Strong Interactions

• Phenomena and Experiments in Weak Interactions

• (Electro)-Weak Interactions and the Standard Model of Particle Physics

  Literature: The lecture does not follow a particular book. A selection of background literature is given below.

C. Berger Elementarteilchenphysik
D. Griffith Introduction to Elementary Particles D. Perkins Introduction to High Energy Physics
A. Seiden Particle Physics: A comprehensive Introduction
W.N. Cottingham, An Introduction to the Standard Model
D.A. Greenwood of Particle Physic
G. Kane Modern Elementary Particle Physics
Halzen & Martin Quarks and Leptons P. Schmüser Feyman-Graphen und Eichtheorien für
Experimentalphysiker
  Comments: This lecture is recommended as the first course for master students interested in (experimental) particle physics.
physics612 Accelerator Physics
We, Th 10-12, SR I, HISKP
Diplom: WPVANG, VANG
  Instructor(s): W. Hillert, R. Maier
  Prerequisites: Mechanics, Electrodynamics
  Contents: Die neuere experimentelle Physik basiert zum Teil auf dem Einsatz von
Teilchenbeschleunigern, insbesondere im Bereich der Hochenergiephysik, der
Materialforschung und der Erforschung der Substruktur der Atomkerne und der
Hadronen. Durch die aktuellen wissenschaftlichen Fragestellungen wurden und
werden auch weiterhin ständig gesteigerte Herausforderungen an den Betrieb und
die Entwicklung von Teilchenbeschleunigern gestellt, was zum Einsatz
modernster Technologien aus einer Vielzahl von physikalischen Bereichen führte
(als Beispiele mögen hier die Realisierung einer ca. 27 km langen, fast vollständig
supraleitenden Anlage am CERN / Genf oder der Aufbau eines mehr als
3 Kilometer langen 1-Angström Röntgenlasers am DESY / Hamburg dienen). Im
Zuge dieser Entwicklungen und systematischen Untersuchungen der physikalischen
Vorgänge in Beschleunigern entstand die Beschleunigerphysik als eigenständiger
Fachbereich der angewandten Physik.

Die vorliegende Vorlesung ist eine Einführung in die Beschleunigerphysik. Sie
gibt einen Überblick über die verschiedenen Funktionsweisen unterschiedlicher
Beschleunigertypen und führt, neben einer physikalischen Behandlung der
wichtigsten Subsysteme (Teilchenquellen, Magnete, Hochfrequenzresonatoren), in
die transversale und longitudinale Strahldynamik ein.


More recent experimental physics is partly based on the use of particle
accelerators, especially in high energy physics, materials research and
exploration of the substructure of atomic nuclei and hadrons. Due to the
current scientific questions, more and more demanding challenges have been and
still are posed to the operation and development of particle accelerators,
thus leading to the use of state-of-the-art high technology taken from a
multitude of fields in physics (as examples may be cited the realisation of a
27 km, almost entirely superconducting facility at CERN / Geneva or the
construction of a more than 3 kilometers long 1 Angström X-ray laser at DESY /
Hamburg). In the course of these developments and systematic investigation of
the physical processes in particle accelerators, particle accelerator physics
emerged as a stand-alone field of applied physics.

The present lecture is meant as an introduction into particle accelerator
physics. It provides an overview of the various functional principles of
different accelerator types and provides, alongside a physical treatment of
the most important subsystems (particle sources, magnets, resonant cavities),
an introduction into transversal and longitudinal beam dynamics.

Inhaltsverzeichnis / Table of Contents:

  • Einführung / Introduction

  • Überblick über Beschleunigertypen / Elementary Overview

  • Bauelemente von Teilchenbeschleunigern / Subsystems of Particle Accelerators

  • Lineare Strahloptik / Linear Beam Optics

  • Kreisbeschleuniger / Circular Accelerators

  Literature: H. Wiedemann, Particle Accelerator Physics I,
3rd edition, Springer 2007, Berlin, ISBN 978-3-540-49043-2

F. Hinterberger, Physik der Teilchenbeschleuniger und
Ionenoptik
, 2. Ausgabe, Springer 2008, Berlin,
ISBN 978-3-540-75282-0

K. Wille, Physik der Teilchenbeschleuniger und
Synchrotronstrahlungsquellen
, 2. überarb. und erw. Aufl.,
Teubner 1996, Stuttgart, ISBN 3-519-13087-4

K. Wille, The physics of particle accelerators, Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7

S. Y. Lee, Accelerator Physics, 3rd edition,
World Scientific, New Jersey 2012, ISBN 978-981-4374-94-1 (pbk)

D.A. Edwards, M.J. Syphers, An Introduction to the Physics of
High Energy Accelerators
, Wiley & Sons 1993, New York,
ISBN 0-471-55163-5

...
  Comments: Es ist vorgesehen, den Lernstoff durch detaillierte Besichtigungen und
praktische Studien an der Beschleunigeranlage ELSA des Physikalischen
Instituts sowie Exkursionen zu anderen Beschleunigeranlagen zu
veranschaulichen und zu vertiefen.

Zu dieser Vorlesung wird ein Script im Internet (pdf-Format, Englisch) zur
Verfügung gestellt. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)

The opportunity will be offered to exemplify and deepen the subject matter by
detailed visits and practical studies at the institute of physics'
accelerator facility ELSA and excursions to other accelerator facilities.

Accompanying the lecture, a script (pdf-format, english) will be provided on
the internet. (http://www-elsa.physik.uni-bonn.de/~hillert/Beschleunigerphysik/)
physics614  Laser Physics and Nonlinear Optics
Tu 10-12, Th 14-16, HS, IAP
Diplom: WPVEXP, VEXP
  Dozent(en): M. Weitz
  Erforderliche Vorkenntnisse: Optik, Atomphysik, Quantenmechanik
  Inhalt: - Propagation von Laserstrahlen, Resonatoren
- Atom-Licht Wechselwirkung
- Prinzip des Lasers, Lasersysteme
- Eigenschaften des Laserlichts
- Anwendungen des Lasers
- Frequenzverdopplung, Summen- und Differenzfrequenzerzeugung
- parametrische Prozesse, Vierwellenmischung
  Literatur: - P. Miloni, J. Eberly; Lasers (Wiley, New York, 1988)
- D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden, 2005)
- F. K. Kneubühl; Laser (Teubner, Wiesbaden, 2005)
- J. Eichler, H.J. Eichler; Laser (Springer, Heidelberg, 2003)
- R. Boyd; Nonlinear Optics (Academic Press, Boston, 2003)
- Y.-R. Shen; The principles of nonlinear optics (Wiley, New York, 1984)

  Bemerkungen: Die Vorlesung kann sowohl von Bachelorstudenten ab dem 5. Semester als auch von Master-/Diplomstudenten gehört werden
physics620 Advanced Atomic, Molecular and Optical Physics
Tu 12, Th 10-12, HS, IAP
Diplom: WPVEXP, VEXP
  Instructor(s): M. Köhl
  Prerequisites: Quantum mechanics
Atomic Physics
  Contents: Part 1: Atomic and optical physics (Matter and light)
Introduction, overview of the course
Reminder of basic atomic structure (including relativistic corrections)
Atoms in external fields
Interaction of light and matter: electric dipole transitions, selection rules;
Magnetic resonance; Ramsey interferometry, atomic clocks,
Dissipative light-matter interaction
Light forces, optical potentials, Laser cooling
Quantisation of light, cavity-QED

Part 2: Quantum information processing
Basic ideas: qubits, gates
Entanglement and quantum algorithms
Ion traps

Part 3: Molecular Physics
Basic molecules: Hydrogen Molecule;
Molecular potentials, bound states, collisions
Feshbach resonances

Part 4: Quantum gases
Evaporative cooling
Bose-Einstein Condensation;
Fundamentals of many-body physics,
Optical lattices
Ultracold Fermi gases
BEC vs. BCS
  Literature: C. Foot, "Atomic Physics"
C. Pethick/H. Smith, "Bose-Einstein condensation in dilute atomic gases"
L. Pitaevskii/S. Stringari, "Bose-Einstein condensation"
L. Nielsen/I. Chuang "Quantum Computation and Quantum Information"
  Comments:  
physics615 Theoretical Particle Physics
Mo 16, Tu 16-18, HS I, PI
Diplom: WPVTHE, VTHE
  Instructor(s): H.-P. Nilles
  Prerequisites: Relativistic quantum mechanics.
Introductory courses in particle physics and quantum field theory are helpful, but not essential.
  Contents: Classical field theory,
Gauge theories for QED and QCD,
Higgs mechanism,
Standard model of strong and electroweak interactions,
Grand unification,
Nonperturbative aspects of the standard model
Physics beyond the standard model
  Literature: Cheng and Li, Gauge theories of elementary particle physics
Halzen and Martin: Quarks and Leptons
Peskin and Schroeder: An Introduction to Quantum Field Theory
  Comments: The course (both lectures and tutorials) are in English.
A condition for participation in the final exam is that 50% of the homework of this class have been solved (not necessarily entirely correctly).

First lecture will take place on Tuesday, October 15th
physics616 Theoretical Hadron Physics
We 14-17, HS, HISKP
Diplom: WPVTHE, VTHE
  Instructor(s): C. Hanhart, S. Krewald, A. Wirzba
  Prerequisites: Quantum Mechanics, Advanced Quantum Theory
  Contents:

  1. Introduction: brief overview of particle physics

  2. Symmetries and Quarks: hadron spectra and interactions, hadron masses, light and heavy quarks, simple quark model,...

  3. Hadron Structure: form factors and structure functions, unitarity and analyticity, vector meson dominance, dispersion relations,...

  4. Introduction to QCD: QCD Lagrangian, asymptotic freedom,...

  5. Chiral symmetry: spontaneous symmetry breaking, Goldstone theorem, hadron interactions at low energies,...

  Literature:

  • F. Halzen, A.D. Martin; Quarks and Leptons (Wiley 1984)

  • D.H. Perkins; Introduction to High Energy Physics (Addison-Wesley 1987)

  • A.W. Thomas, W. Weise; The Structure of the Nucleon (Wiley-VCH 2001)

  • F.E. Close; An Introduction to Quarks and Partons (Academic Press 1980)

  • J.F. Donoghue et al.; Dynamics of the Standard Model (Cambridge University Press 1995)

  • M.E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Westview Press 1995)

  Comments: A basic knowledge of Quantum Field Theory is useful.
physics617 Theoretical Condensed Matter Physics
Mo 15, Tu 14-16, HS, HISKP
Diplom: WPVTHE, VTHE
  Instructor(s): C. Kollath
  Prerequisites: Theoretical Physics I-IV
  Contents: This lecture gives an introduction to the theoretical description of the electronic properties of materials. The focus lies on the discussion of the fascinating collective quantum phenomena induced by the interaction between many particles as for example superconductivity and magnetic ordering.

Outline:
Structure of solids
Electrons in a lattice, Bloch theorem, band structure
Fermi liquid theory
Magnetism
Superconductivity
Mott insulator transition
  Literature: N. W. Ashcroft and N. D. Mermin, "Solid State Physics"
P. W. Anderson, "Basic Notions of Condensed Matter Physics", Addison-Wesley 1997
A. Altland & B. Simons, "Condensed Matter Field Theory",
Cambridge University Press 2006
M.P. Marder, "Condensed Matter Physics", John Wiley & Sons
J. M. Ziman: "Principles of Solid State Physics", Verlag Harry Deutsch 75
C. Kittel: "Quantum Theory of Solids", J. Wiley 63
  Comments: This course teaches basic concepts of condensed matter theory. The macroscopic manifestation of quantum mechanics leads to surprising properties of novel materials.
physics717  High Energy Physics Lab
4 to 6 weeks on agreement
  Instructor(s): E. von Törne
  Prerequisites:  
  Contents: This course offers students in their first year of their Master studies the opportunity to participate in research activities. We plan to replace this course by a module that covers all research areas. Projects in high energy physics will still be possible. For questions, please contact Lecturer E. von Törne, evt@physik.uni-bonn.de.
  Literature:  
  Comments: The students join one of the high energy physics groups groups and conduct their own small research project for typically 4 weeks. We recommend to participate in a project during term break (either in spring or summer/ early fall) but projects during the semester are also possible. More information here: http://heplab.physik.uni-bonn.de/
physics719  BCGS intensive week (Advanced Topics in High Energy Physics)
  Instructor(s): E. von Törne
  Prerequisites:
  Contents: BCGS Intensive Week, detectors and algorithms for high energy physics
07-11. October, Physikalisches Institut Bonn

This course will of interest both for students starting their master studies, students who start their master project soon, Ph.D. students from other fields of physics who wish to broaden their horizon. The BCGS intensive week aims at providing a detailed insight of an LHC detector and the experiments that are done with them to address important questions of fundamental physics today. Emphasis is put on the recent discovery of a new particle by the ATLAS and CMS experiments which is probably the Higgs boson.

About half of the course is devoted to hand-on projects. Students have the choice between two topics:

  • C++ in high energy physics

  • FPGA (hardware-near programming)


What does one need to know to built such detectors and to analyse LHC data? While following these lines, particular emphasis is given to
- the scientific and technical requirements of LHC detectors
- the physics of tracking and energy detectors
- the theoretical background of LHC physics (Standard Model + Higgs physics)
- the experimental methods to address these physics questions
Of course, not all topics can be addressed to depth within one week. Thus an effort is made that students will receive an overview and understand the most important mechanisms.
  Literature:  
  Comments: see web page http://www.uni-bonn.de/~etoerne/teaching/intensive-week13/
The course is an all-day workshop, 07-11. October, starting at 9:15. Students from Cologne: There is a regional train at 8:38 from Köln-Süd that brings you to Bonn in time for the lecture. This train is free with the student ticket.
physics732 Optics Lab
4 to 6 weeks on agreement
  Instructor(s): F. Vewinger, S. Linden, D. Meschede, M. Weitz
  Prerequisites: BSc
  Contents: The Optics Lab is a 4-6 week long practical training/internship in one of the research groups in Photonics and Quantum Optics, which can have several aspects:
- setting up a small experiment
- testing and understanding the limits of experimental components
- simulating experimental situations

Credit points can be obtained after completion of a written report.

  Literature: Will be given by the supervisor
  Comments: For arranging the topic and time of the internship, please contact the group leader of the group you are interested in directly. Please note that a lead time of a few weeks may occur, so contact the group early. In case you are unsure if/where you want to do the optics lab, please contact Frank Vewinger for information.
physics738 Lecture on Advanced Topics in Quantum Optics: Basics of Quantum Information
We 14-16, HS, IAP
  Instructor(s): F. Vewinger
  Prerequisites: BSc
  Contents: This course provides an introduction to the theory and experimental realizations of quantum information. Topics covered include the physics of information processing; quantum logic; quantum algorithms including Shor's factoring algorithm and Grover's search algorithm; quantum error correction; quantum communication and cryptography.
  Literature: M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
Additional Literature will be given in the lecture
  Comments:  
physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
Spektroskopie
Radiofrequenztechnik
Spannungsdoppelbrechung
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Montag, den 14.10.13, 9 c.t.,
Konferenzraum IAP, 3. Stock Wegelerstr. 8

Seminartermine ab 21.10.13
physics751  Group Theory
Mo 10-12, Th 13, HS I, PI
Diplom: VTHE, WPVTHE
  Instructor(s): S. Förste
  Prerequisites: quantum mechanics, some knowledge of linear algebra
  Contents:

  1. Finite groups

  2. Group representations and character theory

  3. Permutation group and Young tableaux

  4. Lie groups and algebras

  5. SU(2), SU(3) and the Poincaré group

  Literature:

  • C. Lüdeling, Group Theory (for Physicists), lecture notes available at http://www.th.physik.uni-bonn.de/nilles/people/luedeling/grouptheory/lecturenotes-noex.pdf

  • H.F. Jones, Groups, representations and physics, 2nd ed.
    (Taylor & Francis, New York, 1998)

  • P. Ramond, Group Theory - A Physicist's Survey,
    (Cambridge University Press, Cambridge, 2010)

  • H. Georgi, Lie algebras in particle physics, 2nd ed.
    (Perseus, Reading, Mass., 1999)

  • F. Stancu, Group theory in subnuclear physics
    (Clarendon, Oxford, 1996)

  • M. Hamermesh, Group theory and its application to physical
    problems
    (Dover, New York, 1989)

  • L. Pontrjagin, Topological Groups (Princeton University Press, 1946)

  Comments:  
physics768 General Relativity for Experimentalists
Th 13, Fr 10-12 SR I, HISKP
  Instructor(s): H. Dreiner
  Prerequisites: Theoretische Physik I & II, Analysis I & II
  Contents: • Review of special relativity
• Curved spacetime of GR
• Experimental tests of GR
• GPS
• Black holes
• Gravitational waves
• Introductory cosmology
  Literature: * Gravity, An Introduction to Einstein's General Relativity, by James Hartle
* A FIRST COURSE IN GENERAL RELATIVITY, BY Bernard Schutz
* EXPLORING BLACK HOLES, by Taylor and Wheeler
  Comments: This course is intended as an introduction to general relativity which should be accessible to students who don't yet have that extensive of a theoretical or mathematical background and also to students in the teacher training course. The emphasis is on observational and experimental aspects. Calculational tools are introduced as they are needed.
physics766  Physics of Higgs Bosons
Tu 14-16, Fr 12, HS I, PI
  Instructor(s): M. Drees
  Prerequisites: Knowledge of the Standard Model of particle physics, at the level taught in the Particle Theory 1 class in Bonn.
  Contents: This class will cover phenomenological and model-building aspects of electroweak symmetry breaking, with emphasis on understanding the scalar boson with mass near 125 GeV discovered last year by the LHC experiments. A possible outline is:

A brief introduction to spontaneous symmetry breaking
The Higgs mechanism
The Higgs boson of the Standard Model
Experimental situation
Non-LHC constraints on the Higgs sector
Extensions of the Standard Model
Precision calculations
  Literature: J. Gunion, H.E. Haber, G.L. Kane and S. Dawson: The Higgs Hunter's Guide (Frontiers of Physics, 2000)
A. Djouadi: Anatomy of Electroweak Symmetry Breaking I (Phys. Rep. 457 (2008) 1, hep-ph/0503173)
A. Djouadi: Anatomy of Electroweak Symmetry Breaking II (Phys. Rep. 459 (2008) 1, hep-ph/0504090)
  Comments: This will be the first time that this class is given, so participating students can have some input on the material to be covered.
physics767 Computational Methods in Condensed Matter Theory
Tu 13, Th 14-16, SR II, HISKP
  Instructor(s): H. Monien
  Prerequisites: A course in condensed matter theory and/or statistical mechanics + prerequisites of these courses.
Some knowledge of a common programming language - preferably C++ - is useful.
  Contents: Computational methods for complex condensed matter systems have made enormous progress in the
last 10 years. This is not only due to the increase computational power but mostly due to the better
understanding of algorithms which are quite sophisticated by now.

This lecture will introduce these modern computational methods of condensed matter physics. These
include

  • Exact diagonalization

  • Numerical renormalization group

  • Density matrix renomalization group

  • Quantum Monte Carlo Methods

  • Stochastic series expansion

  • Continous time Monte Carlo methods.

  • Dynamical mean field theory


and more ... .
  Literature: Will be given in the class.
  Comments: We will use the ALPS library for demonstrations and excercises.
physics772  Physics in Medicine I: Fundamentals of Analyzing Biomedical Signals
Mo 10-12, We 12, SR I, HISKP
Diplom: VANG, WPVANG
  Instructor(s): K. Lehnertz
  Prerequisites: Vordiplom, Bachelor
  Contents: Introduction to the theory of nonlinear dynamical systems
- regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals
- selected examples of nonlinear dynamical systems and their characteristics (model and real world systems)
- selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality)
Time series analysis
- linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function,
autoregressive modeling
- univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents,
entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity
Applications
- nonlinear analysis of biomedical time series (EEG, MEG, EKG)
  Literature: M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988.

H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York, 1989

E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993

H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003

A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001
  Comments: Beginning: Mon, Oct 14, 10:00 ct
physics774  Electronics for Physicists
Tu 10-12, Th 12, HS, HISKP
  Instructor(s): P.-D. Eversheim
  Prerequisites: Practical course in electronics
  Contents: One of the "classic" abilities of an experimentalist is to build those instruments himself he needs but can not get otherwise. In this context the knowledge of electronics - in view of the growing electronics aided acquisition and control of experiments - becomes a key skill of an experimentalist.
The intention of this lecture is to enable the students by means of exemplary experiments to work out concepts to solutions for given problems. A focus of this lecture is to show that many of these solutions or concepts to solutions, respectively, are used in other fields of physics too (quantum mechanics, optics, mechanics, acoustics, . . .). At the end of this lecture, the student should:
i) have an overview over the most common parts in electronics.
ii) be concious about the problems of handling electronic parts and assemblies.
iii) understand the concepts that allow an analysis and synthesis of the dynamic
properties of systems.
  Literature: 1) The Art of Electronics by Paul Horowitz and Winfield Hill,
Cambridge University Press
- ”The practitioners bible” -
2) Elektronik für Physiker by K.-H. Rohe,
Teubner Studienbücher
- A short review in analogue electronics -
3) Laplace Transformation by Murray R. Spiegel,
McGraw-Hill Book Company
- A book you really can learn how to use and apply Laplace
Transformations -
4) Entwurf analoger und digitaler Filter by Mildenberger,
Vieweg
- Applications of Laplace Transformations in analogue electronics -
5) Aktive Filter by Lutz v. Wangenheim,
Hüthig
- Comprehensive book on OP-Amp applications using the Laplace approach -
6) Mikrowellen by A.J.Baden Fuller,
Vieweg
- The classic book on RF and microwaves basics -
7) Physikalische Grundlagen der Hochfrequenztechnik by Meyer / Pottel
Vieweg
- An interesting approach to explain RF behaviour by acoustic
analogies -
  Comments:  
physics652 Seminar on Advanced Topics in Photonics and Quantum Optics
Fr 10-12, HS, IAP
Diplom: SEXP, WPSEXP
  Instructor(s): F. Vewinger
  Prerequisites: BSc
  Contents: The seminar will cover "recent" advances in the field of quantum optics, including for example Bose-Einstein condensation, Ultracold Fermi gases, Quantum Information & Communication, Schrödinger Cats.

Modern physics builds on a few key experiments which started a new field or settled a long standing debate. Especially the "newer" experiments are not covered in the Bachelor studies, as they require a broad theoretical background.
The seminar has two goals: To provide in-depth knowledge about selected key experiments in the field of quantum optics, and to provide practical training in preparing and presenting excellent talks. During the first meeting the organizers will present a list of topics from which each active participant of the seminar can select one.

For each topic literature will be provided. Starting with this material the active participants of the seminar will familiarize themselves with the content. This will be done by discussions as well as by further literature search. Based on the accumulated knowledge an outline for each talk will be made and finally the viewgraphs will be prepared. Then the talk will be presented in the seminar. Typical duration of the talk is 45 minutes. After the talk there will be a discussion about the content. And, as a second part of the discussion, technical issues of the talk will be analyzed. Finally, a short written summary of the talk will be prepared and posted in the internet.

Preparation of the talk is a serious amount of work. It is highly recommended to start already at the beginning of the lecture time to familiarize yourself with the content.

Preliminary list of topics (Early birds can book a topic by email):
- Bose-Einstein Condensation
- Ultracold Fermi Gases
- Superfluid to Mott Transition in Ultracold Gases
- BEC-BCS crossover in cold Fermions
- Superfluidity in Cold Gases
- 2-Dimensional Bose gases
- Polar Quantum Gases
- Condensation of Exciton-Polaritons
- Bose-Einstein Condensation of Photons
- Interferometry with Molecules
- Matterwave Interferometry with entangled states
- Quantum Zeno Effect

  Literature: Will be given in the first seminar.
  Comments: A first meeting will take place friday, October 18th, in the IAP lecture hall at 10:15, where the available topics will be detailed. However, interested students can contact the organizers also in advance to get already a topic for an own talk.
physics655  Seminar on Selected Topics in Environmental Physics
Th 14-16, SR I, HISKP
Diplom: SANG, WPSEXP
  Instructor(s): B. Diekmann
  Prerequisites: Bachelor ( Prediploma for diploma students)
A look into the courses ( see link above WS12/13 (771) & SS 13 (655)would be
useful
  Contents: Course is continuation of a summerterm course, see link above

Thur 17.10 Introduction,
from than on students are invited to give seminar talks about
-Measurement techniques, .. errors in environmental physics
-Environmental Aspects of use of fossile energy sources, Greenhouse warming
-Env. asp's of nuclear energy (radioactivity, of nuclear energy (reactors,
fuel chain) II
-Environmental aspects of renewable energies
-Ozone Depletion
- Odour propagation & detection
-Physics of sounds & noise
-Elektromagnetic waves & smog
6.2.2014 Summary
An excursion to the autumn session of the working group 'energy' and - if manageable 'environment' of the german physical society in Bad Honnef ( likely end of octobver) is foreseen
  Literature: Diekmann,B., Heinloth,K.: Physikalische Grundlagen der Energieerzeugung, Teubner 1997, edition running out
Diekmann, Rosenthal, Energie, submitted to publisher in june 2013, available likely in september 2013

Boeker, Grendelle, Environmental Physics, Vieweg Verlag braunschweig 1997

Physik unserer Umwelt: Die Atmosphäre
Walter Roedel und Thomas Wagner (Springer Verlag, 2010)

http://www.physik.uni-greifswald.de/arbeitsgruppen/umweltphysik-ag-von-savigny/teaching/vorlesung-umweltphysik-ii.html
  Comments: For Diploma students, the lecture is foreseen as SANG seminar ( same criteria as master course)
For Master students 4 CP's are given to those regularly participating and giving a seminar talk with sufficient quality ( presentation/discussion with lecturer
first and presentation to the auditorium hereafter)
physics656 Computational Physics Seminar on Analyzing Biomedical Signals
Mo 14-16, SR I, HISKP
Diplom: SANG, WPSEXP
  Instructor(s): K. Lehnertz, B. Metsch
  Prerequisites: Vordiplom, Bachelor, basics of programming language (e.g., Fortran, C, C++, Pascal)
  Contents: - time series: chaotic model systems, noise, autoregressive processes, real world data
- generating time series: recursive methods, integration of ODEs
- statistical properties of time series: higher order moments, autocorrelation function, power spectra,
corsscorrelation function
- state-space reconstruction (Takens theorem)
- characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic
algorithms, influencing factors, correction schemes)
- testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation
- nonlinear noise reduction
- measuring synchronisation and interdependencies
  Literature: - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
ed., 2003
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
Cambridge University Press, Cambridge UK, 2001
- WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press
- see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/
  Comments: Location: Seminarraum I, HISKP
Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo October 21
6821  Research Internship / Praktikum in der Arbeitsgruppe (SiLab): Semiconductor pixel detector development and materials, FPGAs and ASIC Chips (Design and Testing) (D/E) (http://hep1.physik.uni-bonn.de),
whole day, ~4 weeks, preferred during off-teaching terms, by appointment, PI
  Instructor(s): F. Hügging, H. Krüger, E. von Törne, N. Wermes u.M.
  Prerequisites: Lectures on detectors and electronics lab course (E-Praktikum)
  Contents: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Pixel Detectors and Micro-Electronics
  Literature: will be handed out
  Comments: early aplication necessary

6822  Research Internship / Praktikum in der Arbeitsgruppe:
Proton-Proton-Collisions at the LHC (D/E)
(http://hep1.physik.uni-bonn.de)
lab, whole day, ~4 weeks, preferred during off-teaching terms, by appointment, PI
  Instructor(s): E. von Törne, N. Wermes u.M.
  Prerequisites: Lectures on Particle Physics
  Contents: Within 4 weeks students receive an overview/insight of the research carried out in our research group.

Topics: Analyses of data taken with the ATLAS Experiment at the LHC
especially: Higgs and Top physics, tau-final states and b-tagging


The exact schedule depends on the number of applicants appearing at the same time.
  Literature: will be handed out
  Comments: Early application is required
Contacts: E. von Törne, M. Cristinziani, J. Kroseberg, N. Wermes
6824 Praktikum in der Arbeitsgruppe: Detektorentwicklung und Teilchenphysik an einem Elektron-Positron-Linearcollider / Laboratory in the Research Group: Detector Development and Particle Physics at an Electron-Positron Linear Collider (D/E)
pr, ganztägig, ca. 4 Wochen n. Vereinb., vorzugsweise in den Semesterferien, PI
  Instructor(s): K. Desch, P. Bechtle
  Prerequisites: Vorlesungen über Teilchenphysik
  Contents: In einem 4 wöchigen Praktikum wird den Studierenden die Möglichkeit gegeben

anhand eines eigenen kleinen Projektes einen Einblick in die Arbeitsweise

der experimentellen Hochenergiephysik zu bekommen.



Themen werden bei der Vorbesprechung vereinbart.

Möglichkeiten (Beispiele):

- Simluation von Prozessen am International Linear Collider

- Messungen an einer Zeitprojektionskammer
  Literature: wird ausgegeben
  Comments: Eine frühe Anmeldung ist erwünscht bei Prof. Desch, Dr. P. Bechtle oder Dr.
J. Kaminski
6826 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language (e.g. C, C++, Pascal)
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.

Introduction to time series analysis techniques for biomedical data, neuronal modelling, cellular neural networks. Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:

Prof. Dr. K. Lehnertz

email: klaus.lehnertz@ukb.uni-bonn.de
6829 Praktikum in der Arbeitsgruppe: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten / Laboratory in the Research Group: Setup of detector components, electronics and data acquisition, analysis of data from the Crystal Barrel Experiment at ELSA, simulation of detector components (D/E)
pr, ganztägig, 2-4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., HISKP
  Instructor(s): R. Beck, U. Thoma u.M.
  Prerequisites:  
  Contents: Aufbau und Test von Detektorkomponenten, Elektronik und Datenerfassung, Analyse
von Daten des Crystal Barrel Experiments an ELSA, Simulationen von Detektorkomponenten.
Setup of detector components, electronics and data aquisition, analysis of
data from the Crystal Barrel Experiment at ELSA, simulation of detector
components (D/E)
  Literature:  
  Comments:  
6833 Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Instructor(s): D. Meschede u.M.
  Prerequisites: Two years of physics studies (undergraduate/ bachelor program)
  Contents: Practical training in the research group can have several aspects:

--- setting up a small experiment
--- testing and understanding the limits of experimental components
--- simulating experimental situations

The minimum duration is 30 days, or 6 weeks.
  Literature: will be individually handed out
  Comments: Projects are always available. See our website.
6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

http://www.iap.uni-bonn.de/ag_weitz/Bonn_AG_Quantenoptik.html
astro841 Radio astronomy: tools, applications, and impacts
Tu 16, Th 16-18, Raum 0.012, AIfA
Exercises arranged by appointment
  Instructor(s): U. Klein
  Prerequisites: electrodynamics, interstellar medium
  Contents:
1. Introduction
history
astrophysics and radio astronomy

2. Single-dish telescopes
Cassegrain and Gregory foci
geometries and ray tracing
antenna diagrams
antenna parameters

3. Fourier optics
Fourier transform
aperture – farfield relations
spatial frequencies and filtering
power pattern
convolution and sampling
resolving power

4. Influence of earth’s atmosphere
ionosphere, troposphere
plasma frequency
Faraday rotation
refraction, scintillation
absorption / emission
radiation transport

5. Receivers
total-power and heterodyne systems
system temperature
antenna temperature, sensitivity
Dicke-, correlation receiver
amplifiers
hot-cold calibration

6. Wave propagation in conductors
coaxial cables, waveguides
matching, losses
quasi optics

7. Backend
continuum, IF-polarimeter
spectroscopy
filter spectrometer
autocorrelator
acousto-optical spectrometer
pulsar backend

8. mm and submm techniques
telescope parameters and observables
atmosphere, calibration, chopper wheel
error beam
SIS receivers
bolometers

9. Single-dish observing techniques
on-off, cross-Scan, Raster
continuous mapping, OTF, fast scanning
frequency-switching, wobbling technique

10. Data analysis
sampling theorem
spectroscopy
multi-beam observations
image processing, data presentation

11. Interferometry basics
aperture - image plane
complex visibility
delay tracking
fringe rotation
sensitivity

12. Imaging
Fourier inversion
cleaning techniques
self-calibration
zero-spacing correction

13. VLBI
station requirements
processor
calibration and imaging
retarded baselines
geodesy

14. Spectroscopy
XF and FX correlation
data cubes

15. Polarimetry
cross dipoles
circular feeds
spurious polarization

16. Future developments and science
projects, telescopes
LOFAR, SKA, ALMA, SOFIA, Planck
impacts: ISM, IGM, cosmology ...
  Literature: Lecture Notes (for free; fully spelled out)

Tools of Radio Astronomy
Kristen Rohfs, Thomas L. Wilson
Springer

Radio Astronomy
John D. Kraus
Cygnus-Quasar Books

The Fourier Transform and its Applications
Ronald N. Bracewell
McCraw-Hill Book Company
  Comments:  
astro853  The physics of dense stellar systems
Mo 15-17, Raum 3.010, AIfA
  Instructor(s): P. Kroupa
  Prerequisites: Vordiploma or BSc in physics
  Contents: Stars form in groups or clusters that are far denser than galactic fields. Understanding the dynamical processes within these dense stellar systems is therefore important for understanding the properties of stellar populations of galaxies. The contents of this course are:

Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations, Focker-Planck equation, dynamical states,
relaxation, mass segregation, evaporation, ejection, core collapse.
Formal differentiation between star clusters and galaxies.
Binary stars as energy sinks and sources.
Star-cluster evolution.
Cluster birth, violent relaxation.
Birth of dwarf galaxies.
  Literature: 1) Lecture notes will be provided.
2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988)
3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003)
4) Initial Conditions for Star Clusters:
http://adsabs.harvard.edu/abs/2008LNP...760..181K
5) The stellar and sub-stellar IMF of simple and composite populations:
http://adsabs.harvard.edu/abs/2011arXiv1112.3340K
6) The universality hypothesis: binary and stellar populations in star clusters and galaxies:
http://adsabs.harvard.edu/abs/2011IAUS..270..141K


  Comments: Aims: To gain a deeper understanding of stellar dynamics, the birth, origin and properties of stellar populations and the fundamental building blocks of galaxies.

This course corresponds to course astro853 in the M.Ap. programme.

Start: Monday, 14.10.2013, 15:15
astro856 Quasars and microquasars
Th 13-15, Raum 0.01, MPIfR
  Instructor(s): M. Massi
  Prerequisites:  
  Contents:
Stellar-mass black holes in our Galaxy mimic many of the phenomena seen in quasars but at much shorter timescales. In these lectures we present and discuss how the simultaneous use of multiwavelength observations has allowed a major progress in the understanding of the accretion/ejection phenomenology.


Topics:

Stellar evolution, white dwarf, neutron star, BH
Accretion power in astrophysics
Nature of the mass donor: Low and High Mass X-ray Binaries
Accretion by wind or/and by Roche lobe overflow
Eddington luminosity
Mass function: neutron star or black hole ?
X-ray observations
Temperature of the accretion disc and inner radius
Spectral states
Quasi Periodic Oscillations (QPO)
Radio observations
Single dish monitoring and VLBI
Superluminal motion
Doppler Boosting
Synchrotron radiation
AGN
  Literature:  
  Comments: http://www3.mpifr-bonn.mpg.de/staff/mmassi/#microquasars1
astro892 Seminar on radio astronomy
Th 14-15, Raum 0.012, AIfA
  Instructor(s): F. Bertoldi, J. Kerp, U. Klein, M. Kramer, M. Massi, K. Menten
  Prerequisites:  
  Contents: presentation of publications that are (largely) based upon radio-astronomical measurements
  Literature:  
  Comments: Embedded in the main astrophysics seminar!
astro893  Seminar on stars, stellar systems, and galaxies
Tu 16-17:30, Raum 3.010, AIfA
  Instructor(s): R. Izzard, P. Kroupa, J. Pflamm-Altenburg
  Prerequisites: Vordiplom or Bachelor in physics;
The lecture "Stars and Stellar Evolution" (astro811);
The lecture "Astrophysics of Galaxies" (astro821)
  Contents: The newest literature (e.g. papers from the electronic pre-print server) relevant to research on stars, stellar populations, galaxies and dynamics;
current and preliminary research results by group members and guests on the above topics.
  Literature: Latest astro-ph pre-prints, or recently published research papers.
  Comments: This course is worth 4 credit points. The corresponding certificate ("Schein") is awarded if the student (a) attends the seminar and (b) holds a presentation. The certificate can be picked up either from P.Kroupa or in the office of the secretary on the third floor (AIfA) at the end of the semester.

The students will be introduced to the newest state of knowledge in the field of stellar astrophysics, star clusters, galaxies and dynamics. They will familiarise themselves with open questions and acquire knowledge on the newest methods in research.