.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Wintersemester 2019/2020

Logo der Fachgruppe Physik-Astronomie der Universität Bonn


physics612  Accelerator Physics
Tu 12-14, Th 8-10, HS, HISKP
  Instructor(s): K. Desch, P. Lewis
  Prerequisites: Experimental Physics 1-5, Theoretical Electrodynamics, Electronics useful.
  Contents: Understanding of the functional principle of different types of particle accelerators Layout and design of
simple magneto-optic systems. Basic knowledge of radio frequency engineering and technology
Knowledge of linear beam dynamics in particle accelerators.

Elementary overview of different types of particle accelerators: electrostatic and induction accelerators, RFQ,
Alvarez, LINAC, Cyclotron, Synchrotron, Microtron
Subsystems of particle accelerators: particle sources, RF systems, magnets, vacuum systems
Linear beam optics: equations of motion, matrix formalism, particle beams and phase space
Circular accelerators: periodic focusing systems, transverse beam dynamics, longitudinal beam dynamics.
  Literature: F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer Heidelberg 1997)
H. Wiedemann; Particle Accelerator Physics (Springer, Heidelberg 2. Aufl. 1999)
K. Wille; Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden 2. Aufl.
1996)
D. A. Edwards, M.J. Syphers; An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993)
"Accelerator Physics and Technology" World Scientific Publisher by S. Y. Lee.
uvm.
  Comments:  
physics620 Advanced Atomic, Molecular and Optical Physics
Tu 12-14, Th 9, HS, IAP
  Instructor(s): S. Stellmer
  Prerequisites: Quantum mechanics
Atomic Physics
  Contents: Part 1: Atomic and optical physics (Matter and light)
Introduction, overview of the course;
Reminder of basic atomic structure (including relativistic corrections);
Atoms in external fields;
Interaction of light and matter: electric dipole transitions, selection rules;
Magnetic resonance;
Ramsey interferometry and atomic clocks;
Light forces, optical potentials, laser cooling and trapping;
Quantisation of light;
Cavity-QED;
Optical lattice clocks;

Part 2: Molecular Physics
Basic molecules, hydrogen Molecule;
Molecular potentials, bound states, collisions;
Feshbach resonances;

Part 3: Quantum gases
Evaporative cooling;
Bose-Einstein Condensation;
Fundamentals of many-body physics;
Optical lattices;
Ultracold Fermi gases;
BEC vs. BCS;

Part 4: Quantum information processing
Basic ideas: qubits, gates;
Entanglement and quantum algorithms;
Ion traps;
  Literature: C. Foot, "Atomic Physics"
H. Metcalf/P. van der Straten, "Laser Cooling and Trapping"
C. Pethick/H. Smith, "Bose-Einstein condensation in dilute atomic gases"
L. Pitaevskii/S. Stringari, "Bose-Einstein condensation"
L. Nielsen/I. Chuang "Quantum Computation and Quantum Information"
  Comments:  
physics616  Theoretical Hadron Physics
We 14-17, SR I, HISKP
  Instructor(s): C. Hanhart, T. Luu, A. Nogga
  Prerequisites: Quantum Mechanics, Advanced Quantum Theory
  Contents:

  1. Symmetries and hadron classification schemes

  2. Quark models of hadrons

  3. Hadronic reactions, kinematics, scattering amplitudes and cross sections

  4. Introduction to the dispersion relations

  5. Introduction to the chiral symmetry. Chiral effective field theories.

  6. Introduction to heavy quark physics. Heavy quark effective field theory.

  Literature:

  • F. Halzen, A.D. Martin; Quarks and Leptons (Wiley 1984)

  • D.H. Perkins; Introduction to High Energy Physics (Addison-Wesley 1987)

  • J.F. Donoghue et al.; Dynamics of the Standard Model, 2nd ed. (Cambridge University Press 2014)

  • A.W. Thomas, W. Weise; The Structure of the Nucleon (Wiley-VCH 2001)

  • M.E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Westview Press 1995)

  • F.E. Close; An introduction to Quarks and Partons (Academic Press 1980)

  • J.P. Elliott, P.G. Dawber; Symmetry in Physics (Oxford University Press 1985)

  • W.E. Burcham, M. Jobes; Nuclear and Particle Physics (Prentice Hall 1995)

  • H. Georgi; Lie Algebras in Particle Physics (Westview Press 1999)

  • G. Barton; Introduction to Dispersion Techniques in Field Theory (W.A.Benjamin1965)

  • S. Scherer, M.R. Schindler; A Primer for Chiral Perturbation Theory (Springer 2012)

  • A. Manohar, M.Wise; Heavy Quark Physics (Cambridge University Press 2000)

  Comments: A basic knowledge of Quantum Field Theory is useful.
physics617 Theoretical Condensed Matter Physics
We 12, Fr 12-14, HS, HISKP
  Instructor(s): C. Kollath
  Prerequisites: Theoretical Physics I-IV
  Contents: This lecture gives an introduction to the theoretical description of the electronic properties of materials. The focus lies on the discussion of the fascinating collective quantum phenomena induced by the interaction between many particles as for example superconductivity and magnetic ordering.

Outline:
Structure of solids
Electrons in a lattice, Bloch theorem, band structure
Fermi liquid theory
Magnetism
Superconductivity
Mott insulator transition
  Literature: N. W. Ashcroft and N. D. Mermin, "Solid State Physics"
P. W. Anderson, "Basic Notions of Condensed Matter Physics", Addison-Wesley 1997
A. Altland & B. Simons, "Condensed Matter Field Theory",
Cambridge University Press 2006
M.P. Marder, "Condensed Matter Physics", John Wiley & Sons
J. M. Ziman: "Principles of Solid State Physics", Verlag Harry Deutsch 75
C. Kittel: "Quantum Theory of Solids", J. Wiley 63
  Comments: This course teaches basic concepts of condensed matter theory. The macroscopic manifestation of quantum mechanics leads to surprising properties of novel materials.
physics715 Experiments on the Structure of Hadrons
Mo 14-16, HS I, PI, Th 16-18, SR II, HISKP
  Instructor(s): B. Ketzer
  Prerequisites: Bachelor in Physics
Quantum Mechanics
Physics IV & V (atomic, nuclear & particle)
  Contents: Key experiments for hadron structure over the last century to very recent.
Hadrons and their interactions.
Quarks and their interactions.
Baryon (in particular nucleon) and meson structure.
Hadron spectroscopy.
Exotic states.
  Literature: will be given in the first lecture
  Comments:  
physics719  BCGS intensive week (Advanced Topics in High Energy Physics)
block course 30.09.-04.10.2019, SR II, HISKP
  Instructor(s): E. von Törne
  Prerequisites: Basic knowledge of particle physics at the bachelro or master level is
assumed.
Some programming knowledge (C or C++) would also be very useful.
  Contents: This course will of interest both for students starting their master
studies,
students who start their master project soon, Ph.D. students from other
fields
of physics who wish to broaden their horizon. We will discuss the analysis
of high-mass states at the Large Hadron Collider (LHC) including top and
higgs.The BCGS intensive week aims at providing a detailed insight of an LHC
detector and the experiments that are done with them to address important
questions of fundamental physics today.

What does one need to know to analyse LHC data? While following these lines,
particular emphasis is given to scientific and technical requirements of LHC
detectors
physics of tracking and energy detectors
theoretical background of LHC physics (Standard Model + Higgs physics)
experimental methods to address these physics questions, including neural
net applications
Of course, not all topics can be addressed to depth within one week. Thus an
effort is made that students will receive an overview and understand the
most
important mechanisms.
About half of the course is devoted to a hand-on project which will be
organized
as a simulation game (planspiel). Participants will experimental data of
proton proton collisions. Starting from uncalibrated hits we will create our
own
algorithms and finally search for the Higgs Boson at the LHC. Students will
learn
several aspects of C++ and its applications in high energy physics.
  Literature: Will be provided.
  Comments: The course is an all-day workshop starting on September 30th at 9:15. Please
note that despite the holiday on Oct. 3rd, we will have classes that day.

The Intensive Week will have lectures in the morning and hands-on exercises in
the afternoon.
physics719 BCGS intensive week (Teststrahlmessungen mit einem Pixelteleskop)
block course 09.03. - 13.03.2020, Seminarraum WP-HS
  Instructor(s): I. Gregor
  Prerequisites: Bachelor in Physics
  Contents: - overview on detectors for particle physics
- passage of particles through matter
- basics on tracking detectors with focus on semi-conductor detectors
- important parameters for detector testing
- radiation damage effects
- taking data with a pixel telescope (cosmic tracks)
- data analysis

[for questions please contact gregor[at]physik.uni-bonn.de ]
  Literature: will be handed out
  Comments: the course will take place March 2020 - Early application is required (by end of January 2020)
physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
Mo 9-11, IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Diodenlaser
Optische Resonatoren
Akustooptische Modulatoren
Spektroskopie
Radiofrequenztechnik
Spannungsdoppelbrechung
und vieles mehr
  Literatur: wird gestellt
  Bemerkungen: Vorbesprechung am Montag, den 7.10.19, um 9 c.t.,
Hörsaal IAP, 1. Stock Wegelerstr. 8

Seminartermine ab 14.10.19
physics7502 Random Walks and Diffusion
Th 14-16, SR II, HISKP
  Instructor(s): G. Schütz
  Prerequisites: Quantum mechanics, Thermodynamics, Statistical Physics, Linear Algebra, Partial differential equations
  Contents: Random walks, diffusion, central limit theorem, first passage problems
  Literature: Beginning of the course on 10th Oct at 14:00 s.t.
  Comments:  
physics772 Physics in Medicine: Fundamentals of Analyzing Biomedical Signals
Mo 10-12, We 12, SR I, HISKP
First lecture: 14.10.2019
  Instructor(s): K. Lehnertz
  Prerequisites: Bachelor
  Contents: Introduction to the theory of nonlinear dynamical systems
- regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals
- selected examples of nonlinear dynamical systems and their characteristics (model and real world systems)
- selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality)
Time series analysis
- linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function,
autoregressive modeling
- univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents,
entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity
Applications
- nonlinear analysis of biomedical time series (EEG, MEG, EKG)
  Literature: M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988.

H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York, 1989

E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993

H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003

A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001
  Comments: Beginning: Mon, Oct 14, 10:00 ct
physics776 Physics in Medicine: Physics of Magnetic Resonance Imaging
Tu 10-12, Th 16-18, HS, IAP
  Instructor(s): T. Stöcker
  Prerequisites: Lectures Experimental Physics I-III (physik111-physik311)
  Contents: - Theory and origin of nuclear magnetic resonance (QM and semiclassical approach)
- Spin dynamics, T1 and T2 relaxation, Bloch Equations and the Signal Equation
- Gradient echoes and spin echoes and the difference between T2 and T2*
- On- and off-resonant excitation and the slice selection process
- Spatial encoding by means of gradient fields and the k-space formalism
- Basic imaging sequences and their basic contrasts, basic imaging artifacts
- Hardware components of an MRI scanner, accelerated imaging with multiple receivers
- Computation of signal amplitudes in steady state sequences (Phase Graphs)
- Advanced MRI Sequences: quantifying flow, diffusion, susceptibility and more
- Applications in Neuroimaging
  Literature: - T. Stöcker: Scriptum zur Vorlesung
- E.M. Haacke et al, Magnetic Resonance Imaging: Physical Principles and Sequence Design,
John Wiley 1999
- M.T. Vlaardingerbroek, J.A. den Boer, Magnetic Resonance Imaging: Theory and Practice,
Springer
- Z.P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing
Perspective, SPIE 1999
  Comments:

physics652  Seminar on Quantum Optics and Technology
Mo 14-16, HS, IAP
  Instructor(s): D. Meschede
  Prerequisites: Courses for the Bachelor of Science in Physics
  Contents: We will discuss central experiments of quantum optics and applications in quantum technology.
  Literature: The seminar will be based on original articles. The assigments will be handed out during the first session on Oct 07 2019, 14 c.t.

Note: Early birds may receive a topic by contacting us any time before Oct 07.
  Comments: - The reading period sould be at least 4 weeks.
- The talks will have a length of 45 min.
- Two weeks before your talk a draft of all slided must be presented with your tutor.
- No later than one week before your talk a test talk must be given.
physics655 Computational Physics Seminar on Analyzing Biomedical Signals
Mo 14-16, SR I, HISKP
First meeting: 14.10.2019
  Instructor(s): K. Lehnertz, B. Metsch
  Prerequisites: Bachelor, basics of programming language (e.g., Fortran, C, C++, Pascal)
  Contents: - time series: chaotic model systems, noise, autoregressive processes, real world data
- generating time series: recursive methods, integration of ODEs
- statistical properties of time series: higher order moments, autocorrelation function, power spectra,
corsscorrelation function
- state-space reconstruction (Takens theorem)
- characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic
algorithms, influencing factors, correction schemes)
- testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation
- nonlinear noise reduction
- measuring synchronisation and interdependencies
  Literature: - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
ed., 2003
- A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
Cambridge University Press, Cambridge UK, 2001
- WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press
- see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/
  Comments: Location: Seminarraum I, HISKP
Time: Mo 14 - 16 and one lecture to be arranged
Beginning: Mo October 14 (preliminary discussion)
6821 Research Internship / Praktikum in der Arbeitsgruppe (SiLab): Detector Development: Semiconductor pixel detectors, pixel sensors, FPGAs and ASIC Chips (Design and Testing) (D/E) (http://hep1.physik.uni-bonn.de),
whole day, ~4 weeks, preferred during off-teaching terms, by appointment, PI
  Instructor(s): F. Hügging, H. Krüger, D. Pohl, E. von Törne, N. Wermes u.M.
  Prerequisites: Lecture on detectors and electronics lab course (E-Praktikum)
  Contents: Research Internship:

Students shall receive an overview into the activities of a research group:

here: Development of Semiconductor Pixel Detectors and Micro-Electronics
  Literature: will be handed out
  Comments: early application necessary

6822 Research Internship / Praktikum in der Arbeitsgruppe:
Proton-Proton-Collisions at the LHC (D/E)
(http://hep1.physik.uni-bonn.de)
lab, whole day, ~4 weeks, preferred during off-teaching terms, by appointment, PI
  Instructor(s): M. Cristinziani, T. Lenz, E. von Törne, N. Wermes
  Prerequisites: Lecture(s) on Particle Physics
  Contents: Within 4 weeks students receive an overview/insight of the research carried out in our research group.

Topics: Analyses of data taken with the ATLAS Experiment at the LHC
especially: Higgs and Top physics, tau-final states and b-tagging


The exact schedule depends on the number of applicants appearing at the same time.
  Literature: will be handed out
  Comments: Early application is required
Contacts: J. Dingfelder, E. von Törne, T. Lenz, M. Cristinziani, N. Wermes
6825 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung von Experimenten zur Laserspektroskopie und anderer Präzisionsmessungen; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe
pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
  Instructor(s): S. Stellmer
  Prerequisites:  
  Contents: Small experimental or theoretical projects in relation to our main research work.
  Literature:  
  Comments:  
6826 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
  Instructor(s): K. Lehnertz u.M.
  Prerequisites: basics of programming language
  Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.
Introduction to time series analysis techniques, neuronal modelling, complex networks.
Opportunity for original research on a topic of own choice, with concluding presentation to the group.
  Literature: Working materials will be provided.
  Comments: Contact:
Prof. Dr. K. Lehnertz
email: klaus.lehnertz@ukbonn.de
6830 Praktikum in der Arbeitsgruppe: Detektorentwicklung und Datenanalyse für Experimente der Hadronenphysik bei CERN und ELSA/ Research Internship: Detector Development and Data Analysis for Hadron Physics Experiments at CERN and ELSA (D/E)
pr. ganztägig, ca. 4 Wochen, vorzugsweise in den Semesterferien, n. Vereinb., HISKP
  Instructor(s): B. Ketzer
  Prerequisites:  
  Contents: 4-6 week internship.
Contact Prof. B. Ketzer for possible topics from particle physics data analyis to detector development.
  Literature:  
  Comments:  
6833  Praktikum in der Arbeitsgruppe: Aufbau und Test optischer und spektroskopischer Experimente, Erstellung von Simulationen / Laboratory in the Research Group: Setup and Testing of Optical and Spectroscopical Experiments, Simulation Programming (D/E)
pr, ganztägig, Dauer ca. 4-6 Wochen, n. Vereinb., IAP
  Instructor(s): D. Meschede u.M.
  Prerequisites:  
  Contents: We have always actual projects available.
  Literature:  
  Comments:  
6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
  Dozent(en): M. Weitz u.M.
  Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
  Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
  Literatur: wird gestellt
  Bemerkungen: Homepage der Arbeitsgruppe:

https://www.qo.uni-bonn.de/
astro8503 Radio and X-Ray Observations of Dark Matter and Dark Energy
Fr 13-15, Raum 0.008, AIfA
Exercises/lab course arranged by appointment
  Instructor(s): T. Reiprich
  Prerequisites: Introduction to astronomy.
  Contents: Introduction into the evolution of the universe and the theoretical background of dark matter and dark
energy tests.
Cosmology with clusters of galaxies using X-rays and the Sunyaev-Zeldovich effect.
Cosmic microwave background.
Cosmic distance scale.
Cosmic baryon budget and the warm hot intergalactic medium.
  Literature: A lecture script will be distributed.
  Comments:  
astro8531  The Physics of Dense Stellar Systems
Mo 15:30-18:30, Raum 0.012, AIfA
Exercises arranged by appointment
  Instructor(s): P. Kroupa
  Prerequisites: Vordiploma or BSc in physics
  Contents: Stars form in groups or clusters that are far denser than galactic fields. Understanding the dynamical
processes within these dense stellar systems is therefore important for understanding the properties of
stellar populations of galaxies. The contents of this course are:

Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations,
Focker-Planck equation, dynamical states,
relaxation, mass segregation, evaporation, ejection, core collapse.
Formal differentiation between star clusters and galaxies.
Binary stars as energy sinks and sources.
Star-cluster evolution.
Cluster birth, violent relaxation.
Birth of dwarf galaxies.
Galactic field populations.
  Literature: 1) Lecture notes will be provided.
2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988)
3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003)
4) Initial Conditions for Star Clusters:
http://adsabs.harvard.edu/abs/2008LNP...760..181K
5) The stellar and sub-stellar IMF of simple and composite populations:
http://adsabs.harvard.edu/abs/2011arXiv1112.3340K
6) The universality hypothesis: binary and stellar populations in star clusters and galaxies:
http://adsabs.harvard.edu/abs/2011IAUS..270..141K


  Comments: Aims: To gain a deeper understanding of stellar dynamics, and of the birth, origin and properties of stellar
populations and the fundamental building blocks of galaxies. See the webpage for details.

Start: Monday, 07.10.2019, 15:30
astro856 Quasars and Microquasars
Th 13-15, Raum 0.01, MPIfR
  Instructor(s): M. Massi
  Prerequisites:  
  Contents: Stellar-mass black holes in our Galaxy mimic many of the phenomena seen in quasars but at much shorter timescales. In these lectures we present and discuss how the simultaneous use of multiwavelength observations has allowed a major progress in the understanding of the accretion/ejection phenomenology.


1. Microquasars and Quasars
Definitions
Stellar evolution, white dwarf, neutron star, BH

2. Accretion power in astrophysics
Nature of the mass donor: Low and High Mass X-ray Binaries
Accretion by wind or/and by Roche lobe overflow
Eddington luminosity
Mass function: neutron star or black hole ?

3. X-ray observations
Temperature of the accretion disc and inner radius
Spectral states
Quasi Periodic Oscillations (QPO)

4. Radio observations
Single dish monitoring and VLBI
Superluminal motion (review, article)
Doppler Boosting
Synchrotron radiation
Plasmoids and steady jet

5. AGN
  Literature:  
  Comments: http://www3.mpifr-bonn.mpg.de/staff/mmassi/#microquasars1
6952  Seminar on theoretical dynamics
Fr 14-16, Raum 3.010, AIfA
  Instructor(s): P. Kroupa
  Prerequisites: see web page
  Contents: see web page
  Literature: see web page
  Comments: see web page
6954 Seminar on galaxy clusters
Th 15-16:30, Raum 0.006, AIfA
  Instructor(s): T. Reiprich
  Prerequisites: Introductory astronomy course.
  Contents: The students will report about up-to-date research work on galaxy clusters based on scientific papers.
  Literature: Will be provided.
  Comments:  
6961  Seminar on stars, stellar systems, and galaxies
Di 16-17:30, Raum 3.010, AIfA
  Instructor(s): P. Kroupa
  Prerequisites: 10th semester and upwards
  Contents: Current research problems
See web page
  Literature: Current research papers
See web page
  Comments: Students and postdocs meet once a week for a presentation and discussion of a relevant recent and
published research results.