.pdf-Version des Kommentierten Vorlesungsverzeichnisses

Kommentiertes Vorlesungsverzeichnis Wintersemester 2021/2022

Logo der Fachgruppe Physik-Astronomie der Universität Bonn


6835 Ringvorlesung "Die bewegende Kraft der Wärme"
Rudolf Clausius zum 200. Geburtstag
Do 17-19, WP-HS
  Dozent(en): D. Meschede, H. Monien, P. Vöhringer
  Erforderliche Vorkenntnisse: Teilnahmevoraussetzungen:
keine
Empfohlene Vorkenntnisse:
Grundkenntnisse Mathematik und Physik

  Inhalt: Lernziele der LV:
Der Begriff der Entropie aus der Sicht der Physik und der Chemie und die Rolle der Entropie für aktuelle Fragestellungen aus der Sicht der Lebenswissenschaften, der Informatik, der Klimawissenschaft, den Wirtschaftswissenschaften und noch mehr.

Inhalte der LV:
Der Begriff der Entropie wurde Mitte des 19. Jahrhunderts vom Bonner Physikprofessor Rudolf Clausius geprägt, der am 02.01.2022 seinen 200.sten Geburtstag feiert. Nur mit der Entropie werden Prozesse und Kräfte, die durch Wärmeanwendungen verursacht werden, korrekt beschrieben, wird der Zeit sozusagen eine Richtung verliehen.
In dieser Vorlesung beleuchten wir den umfassenden und ganz aktuellen Einfluss der Entropie und des Werkes von Rudolf Clausius nicht nur auf Physik und Chemie, sondern darüber hinaus auf zahlreiche Wissenschaften wie Informatik Mathematik, Lebenswissenschaften, Klimatologie, Wirtschaftswissenschaften und mehr.

Die Vorlesung will Rudolf Clausius, Bonner Professor, zu seinem 200.sten Geburtstag als einen der bedeutendsten Gelehrten des 19. Jahrhunderts würdigen.
  Literatur:  
  Bemerkungen: Studien- und Prüfungsmodalitäten:
Vorlesung 2-stündig Do 17-19; Kreditpunkte werden durch mündliche Überprüfung (20 min) erworben

physics606 Advanced Quantum Theory
Mo 12-14, We 13, HS I, PI
  Instructor(s): M. Drees
  Prerequisites: Theoretical courses at the Bachelor degree level, in particular, quantum mechanics; fundamentals of the theory of complex functions.
  Contents:

  • Transformations and symmetries: active and passive
    transformation, in Hamiltonian classical mechanics and in quantum mechanics;
    gauge invariance and Aharanov-Bohm effect.

  • Path integral formulation of QM: Propagators; definition of
    the path integral; equivalence to Schrödinger equation; phase space and
    path integrals.

  • Time-dependent perturbation theory: Formalism; applications,
    Fermi's Golden Rule; radiative transitions in atoms.

  • Scattering theory: Wave packets; cross section; Born approximation; partial wave expansion; bound states and resonances.

  • Second quantization: Systems of identical particles; (anti-)symmetric states; bosonic and fermionic annihilation and creation operators; field operators; momentum space description; principle of the laser.

  • Relativistic quantum mechanics: relativistic kinematics; Klein-Gordon equation; Dirac equation; magnetic moment of the electron.


  Literature:
  • R. Shankar, Principles of Quantum Mechanics
  • F. Schwabl, Quantum Mechanics, and Advanced Quantum Mechanics, both Springer
  • L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum
    Mechanics

  •   Comments: The lecture course will, in particular, provide the new insights that stem from the path integral formulation; from analyses of many-particle systems; and from the combination of quantum mechanics with special relativity.
    The lecture and exercises will be given in English.
    More information and additional literature will be given on the lecture web page.
    physics612 Accelerator Physics
    Tu 12-14, HS, HISKP, Th 10-12, HS, IAP
      Instructor(s): D. Elsner
      Prerequisites: Experimental Physics 1-5, Theoretical Electrodynamics, Electronics useful.
      Contents: Understanding of the functional principle of different types of particle accelerators Layout and design of
    simple magneto-optic systems. Basic knowledge of radio frequency engineering and technology.
    Knowledge of linear beam dynamics in particle accelerators.

    Elementary overview of different types of particle accelerators: electrostatic and induction accelerators,
    Alvarez, LINAC, Cyclotron, Synchrotron, Microtron ...
    Linear beam optics: equations of motion, matrix formalism, particle beams and phase space.
    Circular accelerators: periodic focusing systems, transverse beam dynamics, longitudinal beam dynamics.
    Subsystems of particle accelerators: particle sources, RF systems, magnets, vacuum systems.
      Literature: K. Wille, The Physics of Particle Accelerators: An Introduction (Oxford University Press)
    F. Hinterberger; Physik der Teilchenbeschleuniger und Ionenoptik (Springer)
    H. Wiedemann; Particle Accelerator Physics (Springer)
    S. Y. Lee, Accelerator Physics and Technology, (World Scientific)
    Chao, Mess, Tigner, Zimmer, Handbook of Accelerator Physics and Engineering (World Scientfic)
    WEB: CERN accelerator school, https://cas.web.cern.ch/
    and many more
      Comments: Lecture: 3 Teaching hours (3 Semesterwochenstunden)
    Exercises: 1 Teaching hour (1 Semesterwochenstunde)
    The exercises, in two hour blocks, alternate every two weeks with a lecture.


    If the lecture will take place in person or online format (zoom) will be decided closer to the start of the semester.
    physics631 Quantum Optics
    Tu 12-14, Th 8-10, HS, IAP
      Instructor(s): S. Hofferberth, D. Meschede
      Prerequisites: Optics and Atomic Physics Lectures, Quantum Mechanics
    Optik und Atomphysik-Grundvorlesung, Quantenmechanik
      Contents: Quantisation of electromagnetic fields
    Photon statistics and representations of photon states
    Coherence of quantized light fields
    Nonclassical light
    Squeezed states and quantum entanglement
    Interferometry with single photons and nonclassical light
    Interaction between quantized light and matter
    Cavity quantum electrodynamics
      Literature: R. Loudon; The quantum theory of light (Oxford University Press 2000)
    G. J. Milburn, D. F. Walls; Quantum Optics (Springer 1994)
    D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition. 2005)
    M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
    P. Meystre, M. Sargent; Elements of Quantum Optics (Springer 1999)
      Comments: Lecture: 3 Teaching hours (3 Semesterwochenstunden)
    Exercises: 1 Teaching hour (1 Semesterwochenstunde)
    The exercises, in two hour blocks, alternate every two weeks with a lecture.


    If the lecture will take place in person or online format will be decided closer to the start of the semester. Details will follow, also regarding the format of the exercises.
    physics615 Theoretical Particle Physics
    Mo, Tu 16-18, HS I, PI, 3st
      Instructor(s): H. Dreiner
      Prerequisites: Relativistic quantum mechanics.
    Introductory courses in particle physics and quantum field theory are helpful, but not essential.
    Basics of Group Theory can be helpful.
      Contents: Classical field theory,
    Gauge theories for QED and QCD,
    Higgs mechanism,
    Standard model of strong and electroweak interactions
      Literature: Cheng and Li, Gauge theories of elementary particle physics
    Peskin and Schroeder: An Introduction to Quantum Field Theory
    Aitchison and Hey: Gauge Theories in Particle Physics
      Comments: The course (both lectures and tutorials) are in English.
    A condition for participation in the final exam is that 50% of the homework of this class have been solved (not necessarily entirely correctly).

    The first lecture will take place on Monday, October 11

    The exact format of the lecture in times of Corona is not clear yet; please watch the web page listed above.
    physics617 Theoretical Condensed Matter Physics
    We 12, Th 12-14, HS, IAP
      Instructor(s): C. Kollath
      Prerequisites: Theoretical Physics I-IV
      Contents: This lecture gives an introduction to the theoretical description of the electronic properties of materials. The focus lies on the discussion of the fascinating collective quantum phenomena induced by the interaction between many particles as for example superconductivity and magnetic ordering.

    Outline:
    Structure of solids
    Electrons in a lattice, Bloch theorem, band structure
    Fermi liquid theory
    Magnetism
    Superconductivity
    Mott insulator transition
      Literature: N. W. Ashcroft and N. D. Mermin, "Solid State Physics"
    P. W. Anderson, "Basic Notions of Condensed Matter Physics", Addison-Wesley 1997
    A. Altland & B. Simons, "Condensed Matter Field Theory",
    Cambridge University Press 2006
    M.P. Marder, "Condensed Matter Physics", John Wiley & Sons
    J. M. Ziman: "Principles of Solid State Physics", Verlag Harry Deutsch 75
    C. Kittel: "Quantum Theory of Solids", J. Wiley 63
      Comments: This course teaches basic concepts of condensed matter theory. The macroscopic manifestation of quantum mechanics leads to surprising properties of novel materials.
    physics723 Hands-on Seminar: Detector Construction
    We 14-16, SR I, HISKP
      Instructor(s): J. Kaminski, M. Lupberger
      Prerequisites: none
      Contents: The course is designed to give students insight in planning, designing and conducting larger experiments with many groups. Also, skills beyond standard lectures will be conveyed such as CAD and PCB designs, soldering, 3D printing etc.

    The project of this year's seminar is to build a display wall made of coke cans for cosmic rays. The students will be given individual tasks like
    - Mechanical layout of detectors – includes technical drawings (CAD)
    - Gas system
    - HV generation, distribution and regulation
    - Signal processing
    - Triggering
    - LED-display
    - Possibly simulation of optimal arrangement
    These tasks have to be completed and documented. Then all students will participate in the final production, assembly and commissioning of the detector requiring practical work.
    The grades will be based on a final report on the student's subtask.
      Literature: Overviews of the detector physics are given in:
    - H. Kolanoski, N. Wermes, Teilchendetektoren, (Springer, Heidelberg, 2016)
    - W. R. Leo; Techniques for Nuclear and Particle Detection (Springer, Heidelberg 2. Ed. 1994)
    - K. Kleinknecht; Detektoren für Teilchenstrahlung (Teubner, Wiesbaden 4. überarb. Aufl. 2005)
    Dedicated literature matched to individual tasks will be discussed at the beginning of the project.
      Comments: We will make sure that the course can be completed independent of the Covid-19 pandemic situation. Depending on university regulations the (bi-)weekly meetings will be held via zoom or in person. The design and simulation will be done at home and lab work will be done in small groups of 1-2 students.
    physics738 Lecture on Advanced Topics in Quantum Optics: Precision measurements in atomic physics and beyond
    Fr 12-14, HS, IAP
      Instructor(s): S. Stellmer
      Prerequisites: Bachelor courses completed. General interest in contemporary physics.
      Contents: Within this lecture, we will discuss a number of selected research topics from the field of quantum optics that have an impact on other, very different fields of research. To give three examples: we will learn how optical clocks are used to search for dark matter, how laser spectrosopy allows us to understand the dominance of matter over antimatter in the Universe, and how highly precise optical resonators can track the global sea level rise induced by climate change.
      Literature: Will be given within the lecture and tutorials. We will cover very recent research results that has not yet made it into the textbooks.
      Comments: As of end of August, it is not yet clear whether the course will be given in presence, online, or in some hybrid format. Please follow the information posted on eCampus shortly before the beginning of the teaching term. Generally, after three semesters of online teaching, we will try to increase the interaction among students, and between students and lecturer/tutor. To this end, we will allocate more time to the tutorials.
    physics740  Hands-on Seminar: Experimental Optics and Atomic Physics
      Dozent(en): M. Weitz u.M.
      Erforderliche Vorkenntnisse: Optik- und Atomphysik Grundvorlesungen, Quantenmechanik
      Inhalt: Diodenlaser
    Optische Resonatoren
    Akustooptische Modulatoren
    Spektroskopie
    Radiofrequenztechnik
    Spannungsdoppelbrechung
    und vieles mehr
      Literatur: wird gestellt
      Bemerkungen: Vorbesprechung am Montag, den 11.10.2021, um 9 c.t.,

    Die Vorbesprechung findet Online per Zoom statt, wobei Zugangsdaten
    auf ecampus zu finden sind.

    Seminartermine ab 25.10.2021

    Das Seminar ist eine Präsenzveranstaltung und setzt damit die Möglichkeit voraus dass entsprechernder Laborbetrieb stattfinden kann.
    physics751 Group Theory
    We 14-17, HS I, PI
      Instructor(s): C. Hanhart, D. Rönchen
      Prerequisites: quantum mechanics, some knowledge of linear algebra
      Contents:

    1. Motivation: symmetries and groups in physics

    2. Finite groups

    3. Group representations and character theory

    4. SU(2), SU(3) and the Poincaré group

    5. Permutation group and Young tableaux

    6. Lie groups and algebras

      Literature:

    • H.F. Jones, Groups, representations and physics, 2nd ed.
      (Taylor & Francis, New York, NY, 1998)

    • A. Zee, Group Theory in a Nutshell for Physicists
      (Princeton Univ. Press, Princeton, NJ, 2016)

    • F. Stancu, Group theory in subnuclear physics
      (Clarendon, Oxford, UK, 1996)

    • P. Ramond, Group Theory - A Physicist's Survey,
      (Cambridge University Press, Cambridge, UK, 2010)

    • H. Georgi, Lie algebras in particle physics, 2nd ed.
      (Perseus, Reading, Mass., 1999)

    • M. Hamermesh, Group theory and its application to physical problems
      (Dover, New York, NY, 1989)

    • Lecture notes 'Gruppentheorie' (in German) by S. Scherer, University of Mainz, Summer Term 2010:
      http://www.kph.uni-mainz.de/T/members/scherer/GT/Skript_GT_SS_WS09_10_SS10.pdf

      Comments:  
    physics760  Computational Physics
    Tu 10-12, SR I, HISKP
      Instructor(s): S. Krieg, T. Luu, A. Nogga
      Prerequisites: Knowledge of a modern programming language (for example, C and/or C++)
      Contents: Aim of the course: Develop the ability to apply modern
    computational methods for solving
    physics problems

    Main Topics:

    • Lattice Monte Carlo Methods

    • Direct Methods/Integral Equations

    • Machine Learning for physics

    • Multigrid methods


    Final projects and participation in homework assignments required for successful
    completion of course.
      Literature: W.H. Press et al.: Numerical Recipes in C (Cambridge University
    Press)
    C.P. Robert and G. Casella: Monte Carlo Statistical Methods
    (Springer 2004)
    Tao Pang: An Introduction to Computational Physics (Cambridge
    University Press)
    Vesely, Franz J.: Computational Physics: An Introduction
    (Springer)
    Binder, Kurt and Heermann, Dieter W.: Monte Carlo Simulation in
    Statistical Physics
    (Springer)
    Fehske, H.; Schneider, R.; Weisse, A.: Computational Many-Particle
    Physics
    (Springer)
      Comments: Course will be given online and in English
    physics7507  Theory of Quantum Magnetism
    Fr 10-12, HS, HISKP
      Instructor(s): J. Kroha
      Prerequisites: Quantum mechanics
    Statistical physics
    Recommended: Solid state physics (physics613 or physics617) , Quantum field theory (physics755)
      Contents: The dynamics of quantum spins with interaction among each other and with mobile electrons
    is one of the central topics of condensed matter physics, ranging from material-oriented science
    to quantum computing. The fact that quantum spins obey the non-trivial SU(2) commutation
    rules leads to new, fascinating phenomena and requires special quantum field theory techniques
    for their description.
    In this course we will give a balanced account of the rich phenomenology of magnetism and
    of the methods for its theoretical description.

    Contents:

    • Quantum field theory for many-body systems at finite temperature and possibly away from
      thermodynamic equilibrium (introduction, depending on the interest of the audience)

    • Kondo effect: single magnetic impurity interacting with an electron sea:
      Slave boson representation of spin and charge, renormalization group theory
      Nozieres' Fermi liquid theory, applications to quantum dots

    • Spin lattices: Jordan Wigner transformation, fermionic representation of spin

    • Magnetic fluctuations: magnon theory, Holstein-Primakoff representation of spin

    • Lattice of local spins interacting with an electron sea: Kondo and Anderson lattice models

    • Quantum phase transitions


      Literature: Will be given during the first lecture.
      Comments: This lecture course will be held in personal meetings in the lecture hall HISKP.
    In addition, life video streaming of each lecture to a zoom channel will be offered. Whether or not the video stream will also be recorded for later viewing, will be arranged in accordance with the course participants and the data protection rules. At the entrance to each lecture, proof of complete vaccination, recovery from covid or a negative corona test ("3G rules") will be checked. For that purpose, the university will prepare a simple ID card for you. Until then, please bring your certificates to the lecture either in digital or in paper form.
    physics772  Physics in Medicine: Fundamentals of Analyzing Biomedical Signals
    Mo 10-12, We 12, SR I, HISKP
      Instructor(s): K. Lehnertz
      Prerequisites: Bachelor
      Contents: Introduction to the theory of nonlinear dynamical systems
    - regularity, stochasticity, deterministic chaos, nonlinearity, complexity, causality, (non-)stationarity, fractals
    - selected examples of nonlinear dynamical systems and their characteristics (model and real world systems)
    - selected phenomena (e.g. noise-induced transition, stochastic resonance, self-organized criticality)
    Time series analysis
    - linear methods: statistical moments, power spectral estimates, auto- and cross-correlation function,
    autoregressive modeling
    - univariate and bivariate nonlinear methods: state-space reconstruction, dimensions, Lyapunov exponents,
    entropies, determinism, synchronization, interdependencies, surrogate concepts, measuring non-stationarity
    Applications
    - nonlinear analysis of biomedical time series (EEG, MEG, EKG)
      Literature: M. Priestley: Nonlinear and nonstationary time series analysis, London, Academic Press, 1988.

    H.G. Schuster: Deterministic chaos: an introduction. VCH Verlag Weinheim; Basel; Cambridge, New York, 1989

    E. Ott: Chaos in dynamical systems. Cambridge University Press, Cambridge UK, 1993

    H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd ed., 2003

    A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge UK, 2001
      Comments:  
    physics776 Physics in Medicine: Physics of Magnetic Resonance Imaging
    Tu 10-12, Th 16-18, HS, IAP
      Instructor(s): T. Stöcker
      Prerequisites: Lectures Experimental Physics I-III (physik111-physik311)
      Contents: - Theory and origin of nuclear magnetic resonance (QM and semiclassical approach)
    - Spin dynamics, T1 and T2 relaxation, Bloch Equations and the Signal Equation
    - Gradient echoes and spin echoes and the difference between T2 and T2*
    - On- and off-resonant excitation and the slice selection process
    - Spatial encoding by means of gradient fields and the k-space formalism
    - Basic imaging sequences and their basic contrasts, basic imaging artifacts
    - Hardware components of an MRI scanner, accelerated imaging with multiple
    receivers
    - Computation of signal amplitudes in steady state sequences (Phase Graphs)
    - Advanced MRI Sequences: quantifying flow, diffusion, susceptibility and more
    - Applications in Neuroimaging
      Literature: - T. Stöcker: Scriptum zur Vorlesung
    - E.M. Haacke et al, Magnetic Resonance Imaging: Physical Principles and Sequence
    Design,
    John Wiley 1999
    - M.T. Vlaardingerbroek, J.A. den Boer, Magnetic Resonance Imaging: Theory and
    Practice,
    Springer
    - Z.P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal
    Processing
    Perspective, SPIE 1999
      Comments:

    physics653 Seminar on Analysis Methods in Hadron Physics
    Fr 12-14, SR I, HISKP
      Instructor(s): A. Thiel
      Prerequisites: Advanced Quantum Mechanics necessary,
    Theoretical Hadron Physics and Quantum Field Theory helpful for some topics
      Contents: This seminar will cover different methods, which are currently of interest in the field of hadron physics. These
    topics will - among others - include:

    • Commonly used data-analysis methods, like for example Maximum Likelihood, Chi^2,...

    • Partial-wave analysis for hadron physics

    • Bootstrap

    • Error analyses

    • Bayesian inference

    • Marcov Chain Monte Carlo


    For most of these topics small implementations will be necessary, not only literature research.
      Literature: Will be provided during the seminar.
      Comments:  
    physics655 Computational Physics Seminar on Analyzing Biomedical Signals
    Mo 14-16, SR I, HISKP
      Instructor(s): K. Lehnertz, B. Metsch
      Prerequisites: Bachelor, basics of programming language (e.g., Fortran, C, C++, Pascal)
      Contents: - time series: chaotic model systems, noise, autoregressive processes, real world data
    - generating time series: recursive methods, integration of ODEs
    - statistical properties of time series: higher order moments, autocorrelation function, power spectra,
    corsscorrelation function
    - state-space reconstruction (Takens theorem)
    - characterizing measures: dimensions, Lyapunov-exponents, entropies, testing determinism (basic
    algorithms, influencing factors, correction schemes)
    - testing nonlinearity: making surrogates, null hypothesis tests, Monte-Carlo simulation
    - nonlinear noise reduction
    - measuring synchronisation and interdependencies
      Literature: - H. Kantz, T. Schreiber T: Nonlinear time series analysis. Cambridge University Press, Cambridge UK, 2nd
    ed., 2003
    - A. Pikovsky, M. Rosenblum, J. Kurths: Synchronization: a universal concept in nonlinear sciences.
    Cambridge University Press, Cambridge UK, 2001
    - WH. Press, BP. Flannery, SA. Teukolsky, WT. Vetterling: Numerical Recipes: The Art of Scientific
    Computing. Cambridge University Press
    - see also: http://www.mpipks-dresden.mpg.de/~tisean/ and http://www.nr.com/
      Comments: Location: Seminarraum I, HISKP
    Time: Mo 14 - 16 and one lecture to be arranged
    Beginning: Mo October 18 (preliminary discussion)
    physics656 Einführung in die theoretischen Neurowissenschaften
    Fr 8-10, online
      Instructor(s): R.-M. Memmesheimer
      Prerequisites: Extended knowledge of mathematics and physics as well as basic knowledge of biology and programming.
      Contents: This seminar provides an introduction to theoretical neuroscience, with a focus on the description of the dynamics of single neurons as well as of biological neuronal networks, applying methods from physics and mathematics. Fundamental quantitative models will be presented in detail and the participants will explore their properties in practical exercises.

    Contents:
    - Overview of neurons and biological neuronal networks
    - Simple point neuron models
    - Hodgkin-Huxley model: generation of "spikes"
    - Dendrites and synapses
    - Point processes as models for spike trains
    - Basic information theory
    - Neural coding
    - The balanced state
    - Global description of neuronal networks
    - Attractor networks as models for memory
    - Synaptic plasticity
    - Supervised and reinforcement Learning
    - Classical conditioning
      Literature: Peter Dayan, Lawrence F. Abbott, "Theoretical Neuroscience" MIT Press 2001; Wulfram Gerstner, Werner M. Kistler, Richard Naud und Liam Paninski, "Neuronal Dynamics", Cambridge University Press 2014.
      Comments: Form of Testing and Examination:
    Requirements for the examination: 50% of all points from the homework problems, good seminar talk
    Examination: written report of the seminar talk (100% of the final grade)

    Schedule:
    - weekly seminar (2h): "Introduction to Theoretical Neuroscience"
    - weekly exercise (1h): "Introduction to Theoretical Neuroscience"
    physics658 Seminar on Non-perturbative Problems in Strong Interaction Physics
    Tu 12-14, SR II, HISKP
      Instructor(s): E. Berkowitz, M. Garofalo, T. Luu, U. Meißner, A. Rusetsky, C. Urbach
      Prerequisites: AQT, QFT I
      Contents: In this seminar we will cover modern topics in the theory of strong interactions. This will in particular cover topics in:

    • Nuclear Lattice Effective Field Theory

    • Lattice QCD

    • Scattering in finite volume

    • Numerical simulations of Quantum Fieldtheories

      Literature: Will be topic dependent and discussed during the first week.
      Comments:  
    6816 Praktikum in der Arbeitsgruppe: Theorie der kondensierten Materie und Vielteilchen-Physik
    http://www.kroha.uni-bonn.de
    für Studierende im Bachelor-Studiengang,
    pr, ganztägig, Dauer nach Vereinb., PI
      Instructor(s): J. Kroha
      Prerequisites: Grundvorlesungen in theoretischer Physik, insbesondere
    Theoretische Physik III: Quantenmechanik (physik421)
    Theoretische Physik IV: Statistische Physik (physik521).
    Advanced Quantum Theory (physics606) vorteilhaft
    Theoretical Condensed Matter Physics (phyics 617) vorteilhaft.
      Contents: Kleinere Projekte im Zusammenhang mit der in der Forschungsgruppe laufenden Forschung. Sowohl analytische als auch numerische Arbeiten. Die Studierenden sollen frühzeitig an die aktuelle Forschung in der theoretischen Quanten- und Vielteilchenphysik herangeführt werden.
      Literature: Wird nach Vereinbarung gestellt.
      Comments: Homepage der Gruppe: https://www.kroha.uni-bonn.de/
    6821 Research Internship / Praktikum in der Arbeitsgruppe (SiLab): Detector Development: Semiconductor pixel detectors, pixel sensors, FPGAs and ASIC Chips (Design and Testing) (D/E) (http://hep1.physik.uni-bonn.de),
    whole day, ~4 weeks, preferred during off-teaching terms, by appointment, PI
      Instructor(s): F. Hügging, J. Dingfelder, H. Krüger, E. von Törne, N. Wermes u.M.
      Prerequisites: Lecture on detectors and electronics lab course (E-Praktikum)
      Contents: Research Internship:

    Students shall receive an overview into the activities of a research group:

    here: Development of Semiconductor Pixel Detectors and Micro-Electronics
      Literature: will be handed out
      Comments: early application necessary

    6825 Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung von Experimenten zur Laserspektroskopie und anderer Präzisionsmessungen; Mitwirkung an den Forschungsprojekten der Arbeitsgruppe
    pr, ganztägig, Dauer: n. Vereinb. 2-6 Wochen, PI
      Instructor(s): S. Stellmer
      Prerequisites:  
      Contents: Small experimental or theoretical projects in relation to our main research work. This research involves various topics in atomic physics, quantum optics, and quantum computation. Most of our research evolves around optical clocks and precison measurements to investigate physics beyond the standard model.
      Literature:  
      Comments:  
    6826 Praktikum in der Arbeitsgruppe: Neurophysik, Computational Physics, Zeitreihenanalyse
    pr, ganztägig, ca. 4 Wochen, n. Vereinb., HISKP u. Klinik für Epileptologie
      Instructor(s): K. Lehnertz u.M.
      Prerequisites: basics of programming language
      Contents: This laboratory course provides insight into the current research activities of the Neurophysics group.
    Introduction to time series analysis techniques, neuronal modelling, complex networks.
    Opportunity for original research on a topic of own choice, with concluding presentation to the group.
      Literature: Working materials will be provided.
      Comments: Contact:
    Prof. Dr. K. Lehnertz
    email: klaus.lehnertz@ukbonn.de
    6834  Praktikum in der Arbeitsgruppe: Vorbereitung und Durchführung optischer und atomphysikalischer Experimente, Mitwirkung an Forschungsprojekten der Arbeitsgruppe / Laboratory in the Research Group: Preparation and conduction of optical and atomic physics experiments, Participation at research projects of the group (D/E)
    pr, ganztägig, 2-6 Wochen n. Vereinb., IAP
      Dozent(en): M. Weitz u.M.
      Erforderliche Vorkenntnisse: Optik und Atomphysik Grundvorlesungen, Quantenmechanik
      Inhalt: Studenten soll frühzeitig die Möglichkeit geboten werden, an aktuellen Forschungsthemen aus dem Bereich der experimentellen Quantenoptik mitzuarbeiten: Ultrakalte atomare Gase, Bose-Einstein-Kondensation, kollektive photonische Quanteneffekte. Die genaue Themenstellung des Praktikums erfolgt nach Absprache.
      Literatur: wird gestellt
      Bemerkungen: Homepage der Arbeitsgruppe:

    https://www.qo.uni-bonn.de/
    6839 Public presentation of Science / Öffentliche Präsentation von Wissenschaft
    2 SWS, Termin nach Vereinbarung
      Dozent(en): H. Dreiner
      Erforderliche Vorkenntnisse: Physik I
      Inhalt: Alle Aspekte der Praesentation von Physikshows.
      Literatur:  
      Bemerkungen:  
    astro8503 Radio and X-Ray Observations of Dark Matter and Dark Energy
    Fr 13-15, Raum 0.008, AIfA
    Exercises/lab course arranged by appointment
      Instructor(s): T. Reiprich, F. Pacaud
      Prerequisites: Introduction to astronomy.
      Contents: Introduction into the evolution of the universe and the theoretical background of dark matter and dark
    energy tests.
    Cosmology with clusters of galaxies using X-rays and the Sunyaev-Zeldovich effect.
    Cosmic microwave background.
    Cosmic distance scale.
    Cosmic baryon budget and the warm hot intergalactic medium.
      Literature: A lecture script will be distributed.
      Comments:  
    astro8531  The Physics of Dense Stellar Systems
    Mo 15:30-18:30, Raum 0.012, AIfA
    Exercises arranged by appointment
      Instructor(s): P. Kroupa
      Prerequisites: Vordiploma or BSc in physics
      Contents: Stars form in groups or clusters that are far denser than galactic fields. Understanding the dynamical
    processes within these dense stellar systems is therefore important for understanding the properties of
    stellar populations of galaxies. The contents of this course are:

    Fundamentals of stellar dynamics: distribution function, collisionless Boltzmann equation, Jeans equations,
    Focker-Planck equation, dynamical states,
    relaxation, mass segregation, evaporation, ejection, core collapse.
    Formal differentiation between star clusters and galaxies.
    Binary stars as energy sinks and sources.
    Star-cluster evolution.
    Cluster birth, violent relaxation.
    Birth of dwarf galaxies.
    Galactic field populations.
      Literature: 1) Lecture notes will be provided.
    2) J. Binney, S. Tremaine: Galactic Dynamics (Princeton University Press 1988)
    3) D. Heggie, P. Hut: The gravitational million-body problem (Cambridge University Press 2003)
    4) Initial Conditions for Star Clusters:
    http://adsabs.harvard.edu/abs/2008LNP...760..181K
    5) The stellar and sub-stellar IMF of simple and composite populations:
    http://adsabs.harvard.edu/abs/2011arXiv1112.3340K
    6) The universality hypothesis: binary and stellar populations in star clusters and galaxies:
    http://adsabs.harvard.edu/abs/2011IAUS..270..141K


      Comments: Aims: To gain a deeper understanding of stellar dynamics, and of the birth, origin and properties of stellar
    populations and the fundamental building blocks of galaxies. See the webpage for details.

    Start: Monday, 07.10.2019, 15:30
    6952  Seminar on theoretical dynamics
    Fr 14-16, Raum 3.010, AIfA
      Instructor(s): P. Kroupa
      Prerequisites: see web page
      Contents: see web page
      Literature: see web page
      Comments: see web page
    6954 Seminar on galaxy clusters
    Th 15-16:30, Raum 0.006, AIfA
      Instructor(s): T. Reiprich
      Prerequisites: Introductory astronomy course.
      Contents: The students will report about up-to-date research work on galaxy clusters based on scientific papers.
      Literature: Will be provided.
      Comments:  
    6961  Seminar on stars, stellar systems, and galaxies
    Di 16-17:30, Raum 3.010, AIfA
      Instructor(s): P. Kroupa
      Prerequisites: 10th semester and upwards
      Contents: Current research problems
    See web page
      Literature: Current research papers
    See web page
      Comments: Students and postdocs meet once a week for a presentation and discussion of a relevant recent and
    published research results.